cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276519 Expansion of Product_{k>=1} 1/(1 - x^(2*k) - x^(3*k)).

This page as a plain text file.
%I A276519 #13 Nov 16 2016 03:03:39
%S A276519 1,0,1,1,2,2,5,4,9,10,17,19,34,37,61,75,112,138,209,256,376,478,675,
%T A276519 866,1222,1566,2175,2830,3873,5055,6900,9011,12213,16045,21599,28429,
%U A276519 38191,50290,67341,88884,118669,156751,209018,276200,367734,486376,646688
%N A276519 Expansion of Product_{k>=1} 1/(1 - x^(2*k) - x^(3*k)).
%H A276519 Vaclav Kotesovec, <a href="/A276519/b276519.txt">Table of n, a(n) for n = 0..1000</a>
%F A276519 a(n) ~ c * p / r^n, where r = A075778 = 1/A060006 = 0.7548776662466927600495... is the real root of the equation r^3 + r^2 - 1 = 0, p = Product_{n>1} 1/(1 - r^(2*n) - r^(3*n)) = 3.820450591662541853... and c = 0.41149558866264576338190038... is the real root of the equation -1 + 8*c - 23*c^2 + 23*c^3 = 0.
%t A276519 nmax=50; CoefficientList[Series[1/Product[1-x^(2*k)-x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A276519 Cf. A264905, A266686, A275820, A275821, A276526.
%K A276519 nonn
%O A276519 0,5
%A A276519 _Vaclav Kotesovec_, Nov 15 2016