This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276535 #33 Jan 12 2025 05:00:01 %S A276535 1,1,1,1,1,1,1,3,9,63,2331,4114215,16341764835375, %T A276535 266584861903285121344257375, %U A276535 7896333852271846954822982651737848156847060737115875,2309336603704915706429640788623787983392652603516450553629239932054220008270731649775618317371336467375 %N A276535 a(n) = a(n-1) * a(n-6) * (a(n-2) * a(n-5) * (a(n-3) * a(n-4) + 1) + 1) / a(n-7), with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1. %C A276535 Inspired by Somos-7 sequence. %C A276535 a(n) is an integer for n >= 0. %C A276535 a(n+1)/a(n) is an integer for n >= 0. %H A276535 Seiichi Manyama, <a href="/A276535/b276535.txt">Table of n, a(n) for n = 0..18</a> %F A276535 a(n) * a(n-7) = a(n-1) * a(n-6) + a(n-1) * a(n-2) * a(n-5) * a(n-6) + a(n-1) * a(n-2) * a(n-3) * a(n-4) * a(n-5) * a(n-6). %F A276535 a(6-n) = a(n). %F A276535 Let b(n) = b(n-6) * (b(n-2) * b(n-3) * b(n-4) * (b(0) * b(1) * ... * b(n-5))^2 * (b(n-3) * (b(0) * b(1) * ... * b(n-4))^2 + 1)+ 1) with b(0) = b(1) = b(2) = b(3) = b(4) = b(5) = 1, then a(n) = a(n-1) * b(n-1) = b(0) * b(1) * ... * b(n-1) for n > 0. %e A276535 a(7) = a(6) * b(6) = 1 * 3 = 3, %e A276535 a(8) = a(7) * b(7) = 3 * 3 = 9, %e A276535 a(9) = a(8) * b(8) = 9 * 7 = 63, %e A276535 a(10) = a(9) * b(9) = 63 * 37 = 2331. %o A276535 (Ruby) %o A276535 def A(k, n) %o A276535 a = Array.new(2 * k + 1, 1) %o A276535 ary = [1] %o A276535 while ary.size < n + 1 %o A276535 i = 0 %o A276535 k.downto(1){|j| %o A276535 i += 1 %o A276535 i *= a[j] * a[-j] %o A276535 } %o A276535 break if i % a[0] > 0 %o A276535 a = *a[1..-1], i / a[0] %o A276535 ary << a[0] %o A276535 end %o A276535 ary %o A276535 end %o A276535 def A276535(n) %o A276535 A(3, n) %o A276535 end %Y A276535 Cf. A006723, A276534. %K A276535 nonn %O A276535 0,8 %A A276535 _Seiichi Manyama_, Nov 16 2016