cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276536 Binomial sums of the cubes of the central binomial coefficients.

This page as a plain text file.
%I A276536 #34 Mar 07 2025 06:43:20
%S A276536 1,9,233,8673,376329,17800209,890215361,46294813497,2478150328777,
%T A276536 135642353562321,7556884938829233,427106589765940137,
%U A276536 24429206859151618209,1411391470651692285609,82245902444586364980057,4828398428680134702936273
%N A276536 Binomial sums of the cubes of the central binomial coefficients.
%H A276536 Seiichi Manyama, <a href="/A276536/b276536.txt">Table of n, a(n) for n = 0..554</a>
%H A276536 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html">Complete Elliptic Integral of the First Kind</a>
%H A276536 The Wolfram Functions Site, <a href="http://functions.wolfram.com/EllipticIntegrals/EllipticK/introductions/CompleteEllipticIntegrals/02/">Complete Elliptic Integrals</a>, 2016.
%F A276536 a(n) = Sum_{k = 0..n} binomial(n, k)*binomial(2*k, k)^3.
%F A276536 Recurrence: (n^3 + 12n^2 + 48n + 64) * a(n+4) - (68n^3 + 714n^2 + 2500n + 2919) * a(n+3) + (198n^3 + 1782n^2 + 5363n + 5397) * a(n+2) - 98 * (2n^3 + 15n^2 + 37n + 30) * a(n+1) + 65 * (n^3 + 6n^2 + 11n + 6) * a(n) = 0.
%F A276536 G.f.: (4/Pi^2) * K(1/2 - 1/2 * sqrt((1-65*t)/(1-t)))^2 / (1-t), where K(x) is complete elliptic integral of the first kind (defined as in MathWorld or in The Wolfram Functions Site).
%F A276536 a(n) ~ 65^(n+3/2) / (512 * Pi^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Nov 16 2016
%F A276536 a(n) = 4F3(1/2,1/2,1/2,-n; 1,1,1; -64). - _Ilya Gutkovskiy_, Nov 25 2016
%t A276536 Table[Sum[Binomial[n, k]Binomial[2k, k]^3, {k, 0, n}], {n, 0, 100}]
%o A276536 (Maxima) makelist(sum(binomial(n,k)*binomial(2*k,k)^3,k,0,n),n,0,12);
%o A276536 (Magma) [&+[Binomial(n, k)*Binomial(2*k, k)^3: k in [0..n]]: n in [0..20]]; // _Vincenzo Librandi_, Nov 30 2016
%Y A276536 Cf. Sum_{k = 0..n} binomial(n, k)*binomial(2*k, k)^m: A026375 (m=1), A248586 (m=2), this sequence (m=3).
%K A276536 nonn
%O A276536 0,2
%A A276536 _Emanuele Munarini_, Nov 16 2016