cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276537 Alternating binomial sums of the cubes of the central binomial coefficients.

This page as a plain text file.
%I A276537 #39 Mar 07 2025 06:43:16
%S A276537 1,7,201,7375,312265,14365887,697859169,35226348087,1829569294665,
%T A276537 97138289500735,5248514415816721,287657066913117447,
%U A276537 15953440327189548001,893653778439275931175,50488236061157830951545,2873526763346873838886815
%N A276537 Alternating binomial sums of the cubes of the central binomial coefficients.
%H A276537 Seiichi Manyama, <a href="/A276537/b276537.txt">Table of n, a(n) for n = 0..558</a>
%H A276537 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html">Complete Elliptic Integral of the First Kind</a>
%H A276537 The Wolfram Functions Site, <a href="http://functions.wolfram.com/EllipticIntegrals/EllipticK/introductions/CompleteEllipticIntegrals/02/">Complete Elliptic Integrals</a>, 2016.
%F A276537 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*binomial(2*k,k)^3.
%F A276537 Recurrence: (n^3+12*n^2+48*n+64)*a(n+4)-(60*n^3+630*n^2+2204*n+2569)*a(n+3)-(186*n^3+1674*n^2+5037*n+5067)*a(n+2)-94*(2*n^3+15*n^2+37*n+30)*a(n+1)-63*(n^3+6*n^2+11*n+6)*a(n)=0.
%F A276537 G.f.: (4/Pi^2)*K(1/2-1/2*sqrt((1-63*t)/(1+t)))^2/(1+t), where K(x) is the complete elliptic integral of the first kind (defined as in MathWorld or in The Wolfram Functions Site).
%F A276537 a(n) ~ 3^(2*n+3) * 7^(n+3/2) / (512 * Pi^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Nov 16 2016
%F A276537 a(n) = (-1)^n*4F3(1/2,1/2,1/2,-n; 1,1,1; 64). - _Ilya Gutkovskiy_, Nov 25 2016
%t A276537 Table[Sum[Binomial[n,k]Binomial[2k,k]^3(-1)^(n-k),{k,0,n}],{n,0,100}]
%o A276537 (Maxima) makelist(sum(binomial(n,k)*binomial(2*k,k)^3*(-1)^(n-k),k,0,n),n,0,12);
%o A276537 (Magma) [&+[(-1)^(n-k)*Binomial(n,k)*Binomial(2*k,k)^3: k in [0..n]]: n in [0..20]]; // _Vincenzo Librandi_, Dec 03 2016
%Y A276537 Cf. A276536.
%Y A276537 Similar sums of m-powers of the central binomial coefficients: A002426 (m=1), A278934 (m=2), this sequence (m=3).
%K A276537 nonn
%O A276537 0,2
%A A276537 _Emanuele Munarini_, Nov 16 2016