cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276592 Numerator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).

This page as a plain text file.
%I A276592 #35 Apr 01 2023 23:04:15
%S A276592 1,1,1,17,31,691,5461,929569,3202291,221930581,4722116521,56963745931,
%T A276592 14717667114151,2093660879252671,86125672563201181,
%U A276592 129848163681107301953,868320396104950823611,209390615747646519456961,14129659550745551130667441,16103843159579478297227731
%N A276592 Numerator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).
%C A276592 Apart from signs, same as A089171 and A279370. - _Peter Bala_, Feb 07 2019
%H A276592 Seiichi Manyama, <a href="/A276592/b276592.txt">Table of n, a(n) for n = 1..276</a>
%H A276592 Siddharth Dwivedi, Vivek Kumar Singh, and Abhishek Roy, <a href="https://arxiv.org/abs/2007.07033">Semiclassical limit of topological Rényi entropy in 3d Chern-Simons theory</a>, arXiv:2007.07033 [hep-th], 2020. See also <a href="https://doi.org/10.1007/JHEP12(2020)132">J. of High Energy Physics</a> (2020) Vol. 2020, Issue 12, Article 132.
%F A276592 a(n)/A276593(n) + A276594(n)/A276595(n) = A046988(n)/A002432(n).
%F A276592 a(n)/A276593(n) = (-1)^(n+1) * B_{2*n} * (2^(2*n) - 1) / (2 * (2*n)!), where B_n is the Bernoulli number. - _Seiichi Manyama_, Sep 03 2018
%p A276592 seq(numer(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
%t A276592 a[n_]:=Numerator[Pi^(-2 n) (1-2^(-2 n)) Zeta[2 n]]  (* _Steven Foster Clark_, Mar 10 2023 *)
%t A276592 a[n_]:=Numerator[(-1)^n SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* _Steven Foster Clark_, Mar 10 2023 *)
%t A276592 a[n_]:=Numerator[(-1)^n Residue[Zeta[s] Gamma[s] (1-2^(1-s)),{s,1-2 n}]] (* _Steven Foster Clark_, Mar 11 2023 *)
%Y A276592 Cf. A002432, A046988, A276593, A276594, A276595, A089171, A279370.
%K A276592 nonn,frac
%O A276592 1,4
%A A276592 _Martin Renner_, Sep 07 2016