cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276593 Denominator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).

This page as a plain text file.
%I A276593 #39 Apr 02 2023 00:42:43
%S A276593 8,96,960,161280,2903040,638668800,49816166400,83691159552000,
%T A276593 2845499424768000,1946321606541312000,408727537373675520000,
%U A276593 48662619743783485440000,124089680346647887872000000,174221911206693634572288000000,70734095949917615636348928000000
%N A276593 Denominator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n).
%C A276593 A276592(n)/a(n) * Pi^(2*n) = Sum_{k>=1} 1/(2*k-1)^(2*n) > 1. So Pi^(2*n) > a(n)/A276592(n). - _Seiichi Manyama_, Sep 03 2018
%H A276593 Seiichi Manyama, <a href="/A276593/b276593.txt">Table of n, a(n) for n = 1..225</a>
%F A276593 A276592(n)/a(n) + A276594(n)/A276595(n) = A046988(n)/A002432(n).
%F A276593 A276592(n)/a(n) = (-1)^(n+1) * B_{2*n} * (2^(2*n) - 1) / (2 * (2*n)!), where B_n is the Bernoulli number. - _Seiichi Manyama_, Sep 03 2018
%e A276593 From _Seiichi Manyama_, Sep 03 2018: (Start)
%e A276593 n |    Pi^(2*n)   |   a(n)/A276592(n)
%e A276593 --+---------------+------------------------------------
%e A276593 1 |        9.8... |           8
%e A276593 2 |       97.4... |          96
%e A276593 3 |      961.3... |         960
%e A276593 4 |     9488.5... |      161280/17     =     9487.0...
%e A276593 5 |    93648.0... |     2903040/31     =    93646.4...
%e A276593 6 |   924269.1... |   638668800/691    =   924267.4...
%e A276593 7 |  9122171.1... | 49816166400/5461   =  9122169.2... (End)
%p A276593 seq(denom(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22);
%t A276593 a[n_]:=Denominator[(1-2^(-2 n)) Zeta[2 n]] (* _Steven Foster Clark_, Mar 10 2023 *)
%t A276593 a[n_]:=Denominator[1/2 SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* _Steven Foster Clark_, Mar 10 2023 *)
%t A276593 a[n_]:=Denominator[1/2 Residue[Zeta[s] Gamma[s] (1-2^(1-s)) x^(-s),{s,1-2 n}]] (* _Steven Foster Clark_, Mar 11 2023 *)
%Y A276593 Cf. A002432, A046988, A276592, A276594, A276595.
%K A276593 nonn,frac
%O A276593 1,1
%A A276593 _Martin Renner_, Sep 07 2016