This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276610 #19 Sep 15 2016 12:23:12 %S A276610 1,5,2,9,10,2,13,20,12,4,17,28,24,24,2,21,38,36,44,18,4,25,46,48,66, %T A276610 30,28,6,29,56,58,90,46,54,44,2,33,64,68,114,60,84,84,22,4,37,74,82, %U A276610 136,74,104,122,40,38,8,41,82,92,152,86,136,156,54,60,48,4,45,92,102,174,106,162,194,76,94,116,40,2 %N A276610 Square array A(row,col) = A255127(row+1,col) - A255127(row,col): the first differences of each column of Ludic array, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... %C A276610 Not all rows are monotonic. See A276620 for their first differences. %H A276610 Antti Karttunen, <a href="/A276610/b276610.txt">Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of array</a> %H A276610 <a href="/index/Si#sieve">Index entries for sequences generated by sieves</a> %F A276610 A(row,col) = A255127(row+1,col) - A255127(row,col). %F A276610 A(row,col) = A269379(A255127(row,col)) - A255127(row,col). %e A276610 The top left 16 x 15 corner of the array: %e A276610 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61 %e A276610 2, 10, 20, 28, 38, 46, 56, 64, 74, 82, 92, 100, 110, 118, 128, 136 %e A276610 2, 12, 24, 36, 48, 58, 68, 82, 92, 102, 114, 126, 138, 148, 158, 172 %e A276610 4, 24, 44, 66, 90, 114, 136, 152, 174, 202, 222, 244, 264, 284, 310, 330 %e A276610 2, 18, 30, 46, 60, 74, 86, 106, 120, 128, 150, 162, 174, 192, 204, 216 %e A276610 4, 28, 54, 84, 104, 136, 162, 180, 210, 238, 260, 288, 318, 346, 366, 396 %e A276610 6, 44, 84, 122, 156, 194, 234, 282, 316, 348, 388, 428, 464, 504, 548, 584 %e A276610 2, 22, 40, 54, 76, 90, 102, 122, 144, 164, 180, 198, 210, 230, 240, 264 %e A276610 4, 38, 60, 94, 120, 150, 190, 210, 240, 270, 302, 330, 364, 390, 430, 456 %e A276610 8, 48, 116, 162, 236, 288, 336, 406, 446, 510, 576, 622, 680, 738, 786, 844 %e A276610 4, 40, 76, 104, 136, 166, 194, 212, 270, 298, 318, 356, 382, 412, 462, 492 %e A276610 2, 24, 38, 52, 62, 108, 124, 148, 150, 182, 198, 222, 242, 260, 272, 300 %e A276610 4, 38, 70, 116, 148, 164, 210, 240, 270, 300, 354, 388, 414, 448, 474, 504 %e A276610 6, 58, 102, 142, 194, 234, 290, 348, 408, 436, 460, 524, 576, 630, 696, 726 %e A276610 8, 60, 134, 204, 256, 322, 390, 446, 498, 578, 642, 684, 774, 828, 870, 948 %o A276610 (Scheme) %o A276610 (define (A276610 n) (A276610bi (A002260 n) (A004736 n))) %o A276610 (define (A276610bi row col) (- (A255127bi (+ 1 row) col) (A255127bi row col))) ;; Code for A255127bi given in A255127. %Y A276610 Transpose: A276609. %Y A276610 Row 1: A016813. %Y A276610 Column 1: A260723 (from the second 1 onward), Column 2: A276606. %Y A276610 Cf. A255127, A269379. %Y A276610 Cf. also arrays A257257, A257513 and A276620 (gives the first differences of each row). %K A276610 nonn,tabl %O A276610 1,2 %A A276610 _Antti Karttunen_, Sep 13 2016