A276625 Finitary numbers. Matula-Goebel numbers of rooted identity trees.
1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 39, 41, 47, 55, 58, 62, 65, 66, 78, 79, 82, 87, 93, 94, 101, 109, 110, 113, 123, 127, 130, 137, 141, 143, 145, 155, 158, 165, 167, 174, 179, 186, 195, 202, 205, 211, 218, 226, 235, 237, 246, 254, 257, 271, 274, 282, 286, 290, 293, 303, 310, 313, 317, 319, 327, 330
Offset: 1
Keywords
Examples
This sequence is proposed to be a canonical representation for rooted identity trees. The first thirty terms are the following. 1 () 26 (()(()(()))) 62 (()((((()))))) 2 (()) 29 ((()((())))) 65 (((()))(()(()))) 3 ((())) 30 (()(())((()))) 66 (()(())(((())))) 5 (((()))) 31 (((((()))))) 78 (()(())(()(()))) 6 (()(())) 33 ((())(((())))) 79 ((()(((()))))) 10 (()((()))) 39 ((())(()(()))) 82 (()((()(())))) 11 ((((())))) 41 (((()(())))) 87 ((())(()((())))) 13 ((()(()))) 47 (((())((())))) 93 ((())((((()))))) 15 ((())((()))) 55 (((()))(((())))) 94 (()((())((())))) 22 (()(((())))) 58 (()(()((())))) 101 ((()(()(())))) We build the sequence as follows: The empty product is 1, so by (3) 1 is finitary. So is prime(1) = 2 by (2), so is prime(2) = 3 by (2), so is prime(3) = 5 by (2), so is 2*3 = 6 by (3), and so on. - _N. J. A. Sloane_, Oct 03 2016
Crossrefs
Programs
-
Mathematica
primeMS[n_Integer?Positive]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; finitaryQ[n_Integer?Positive]:=finitaryQ[n]=Or[n===1,With[{m=primeMS[n]},{UnsameQ@@m,finitaryQ/@m}]/.List->And]; fin[n_Integer?Positive]:=If[n===1,1,Block[{x=fin[n-1]+1},While[Not[finitaryQ[x]],x++];x]]; Array[fin,200]
Formula
a(n) = primePi(A277098(n)).
Comments