cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276639 Triangle T(m, n) = the number of point-labeled graphs with n points and m edges, no points isolated. By rows, n >= 0, ceiling(n/2) <= m <= binomial(n,2).

Original entry on oeis.org

1, 1, 3, 1, 3, 16, 15, 6, 1, 30, 135, 222, 205, 120, 45, 10, 1, 15, 330, 1581, 3760, 5715, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 315, 4410, 23604, 73755, 159390, 259105, 331716, 343161, 290745, 202755, 116175, 54257, 20349, 5985, 1330, 210, 21, 1
Offset: 1

Views

Author

David Pasino, Sep 08 2016

Keywords

Comments

The row sums are A006129, omitting row 1 and A006129(1).

Examples

			Triangle T(n, m) begins:
n/m  0  1  2  3   4    5    6    7    8    9   10
0    1  0  0  0   0    0    0    0    0    0   0
1    0  0  0  0   0    0    0    0    0    0   0
2    0  1  0  0   0    0    0    0    0    0   0
3    0  0  3  1   0    0    0    0    0    0   0
4    0  0  3  16  15   6    1    0    0    0   0
5    0  0  0  30  135  222  205  120  45   10  1
		

Crossrefs

Another version is A054548.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] (-1)^(n - k) Binomial[Binomial[k, 2], m], {k, 0, n}], {n, 7}, {m, Ceiling[n/2], Binomial[n, 2]}] /. {} -> {1} // Flatten (* Michael De Vlieger, Sep 19 2016 *)

Formula

T(n, m) = Sum_{k=0,..n} binomial(n, k) * (-1)^(n-k) * A084546(k, m).