This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276650 #39 Mar 20 2024 11:11:34 %S A276650 2,2399,1801152661459,73885357344138503765443 %N A276650 Primes of the form prime(k)^k - PrimePi(k). %C A276650 Searched up to k = 1000. %C A276650 No additional entries up to k = 5000. - _Ethan Beihl_, Oct 15 2016 %C A276650 No additional entries up to k = 15000. - _Tyler Busby_, Mar 12 2024 %H A276650 Farideh Firoozbakht, <a href="https://primes.utm.edu/curios/page.php/14.html">Prime Curios: Prime(14)^14 - pi(14) is prime</a>. %e A276650 2 is in the sequence because 2 is prime and 2 = prime(1)^1 - PrimePi(1) = 2^1 - 0. %e A276650 2399 is in the sequence because 2399 is prime and 2399 = prime(4)^4 - PrimePi(4) = 7^4 - 2. %e A276650 1801152661459 is in the sequence because 1801152661459 is prime and 1801152661459 = prime(9)^9 - PrimePi(9) = 23^9 - 4. %e A276650 73885357344138503765443 is in the sequence because 73885357344138503765443 is prime and 73885357344138503765443 = prime(14)^14 - PrimePi(14) = 43^14 - 6. %t A276650 Select[Map[Prime[#]^# - PrimePi@ # &, Range@ 1500], PrimeQ] (* _Michael De Vlieger_, Sep 26 2016 *) %o A276650 (SageMath) %o A276650 max_n = 20 %o A276650 seq = [] %o A276650 for n in range(1, max_n+1): %o A276650 p = nth_prime(n)^n - prime_pi(n) %o A276650 if is_prime(p): %o A276650 seq.append(p) %o A276650 print(seq) %Y A276650 Cf. A000720, A062457. %K A276650 nonn,more %O A276650 1,1 %A A276650 _Robert C. Lyons_, Sep 09 2016