cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276659 Accumulation of the upper left triangle used in binomial transform of nonnegative integers.

This page as a plain text file.
%I A276659 #60 Sep 08 2022 08:46:17
%S A276659 0,2,11,39,114,300,741,1757,4052,9162,20415,44979,98214,212888,458633,
%T A276659 982905,2097000,4456278,9436995,19922735,41942810,88080132,184549101,
%U A276659 385875669,805306044,1677721250,3489660551,7247756907,15032385102,31138512432,64424508945
%N A276659 Accumulation of the upper left triangle used in binomial transform of nonnegative integers.
%C A276659 After 0, is this the second column of A108284? [_Bruno Berselli_, Sep 13 2016 - this comment may be removed if the property is confirmed.]
%H A276659 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (7,-19,25,-16,4).
%F A276659 O.g.f.: x*(2 - 3*x)/((1 - x)^3*(1 - 2*x)^2).
%F A276659 E.g.f.: x*exp(x)*(8*exp(x) - x - 4)/2.
%F A276659 a(n) = n*(2^(n+2) - n - 3)/2.
%F A276659 a(n) = 7*a(n-1) - 19*a(n-2) + 25*a(n-3) - 16*a(n-4) + 4*a(n-5) for n > 4.
%F A276659 a(n) = a(n-1) + A058877(n+1). - _R. J. Mathar_, Sep 14 2016
%F A276659 a(n) = Sum_{k=2..n+3} Sum_{i=2..n+3} k * C(n-i+3,k). - _Wesley Ivan Hurt_, Sep 20 2017
%e A276659 Starting from the triangle:
%e A276659    0,  1,  2,  3,  4,  5, ...
%e A276659    1,  3,  5,  7,  9, ...
%e A276659    4,  8, 12, 16, ...
%e A276659   12, 20, 28, ...
%e A276659   32, 48, ...
%e A276659   80, ...
%e A276659   ...
%e A276659 the first terms are:
%e A276659 a(0) = 0;
%e A276659 a(1) = a(0) + 1 + 1 = 2;
%e A276659 a(2) = a(1) + 4 + 3 + 2 = 11;
%e A276659 a(3) = a(2) + 12 + 8 + 5 + 3 = 39, etc.
%e A276659 First column is A001787: n*2^(n-1).
%p A276659 A276659:=n->n*(2^(n+2) - n - 3)/2: seq(A276659(n), n=0..50); # _Wesley Ivan Hurt_, Sep 16 2017
%t A276659 t[0, k_] := k; t[n_, k_] := t[n, k] = t[n - 1, k] + t[n - 1, k + 1]; a[n_] := Sum[t[m, k], {m, 0, n}, {k, 0, n - m}]; Table[a[n], {n, 0, 30}]
%t A276659 Table[(2^(n + 2) - n - 3) n / 2, {n, 0, 30}] (* _Vincenzo Librandi_, Sep 13 2016 *)
%o A276659 (Magma) [(2^(n+2)-n-3)*n/2: n in [0..40]]; // _Vincenzo Librandi_, Sep 13 2016
%o A276659 (PARI) x='x+O('x^99); concat(0, Vec(x*(2-3*x)/((1-x)^3*(1-2*x)^2))) \\ _Altug Alkan_, Sep 14 2017
%Y A276659 Cf. A001787, A058877, A062111, A152920.
%K A276659 nonn,easy
%O A276659 0,2
%A A276659 _Jean-François Alcover_ and _Francois Alcover_, Sep 11 2016
%E A276659 Edited and extended by _Bruno Berselli_, Sep 13 2016