cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276689 Least term in the periodic part of the continued fraction expansion of sqrt(n) or 0 if n is square.

This page as a plain text file.
%I A276689 #26 Aug 02 2017 16:33:04
%S A276689 0,0,2,1,0,4,2,1,1,0,6,3,2,1,1,1,0,8,4,1,2,1,1,1,1,0,10,5,2,1,2,1,1,1,
%T A276689 1,1,0,12,6,4,3,2,2,1,1,1,1,1,1,0,14,7,1,1,1,2,2,1,1,1,1,1,1,1,0,16,8,
%U A276689 1,4,1,1,1,2,1,1,1,1,1,1,1,1,0,18,9,6,1
%N A276689 Least term in the periodic part of the continued fraction expansion of sqrt(n) or 0 if n is square.
%C A276689 If r > 0 is even, then a((rm/2)^2+m) = r for all m >= 1 and a((r^2-2)^2/4 + (r+1)^3) = r.
%C A276689 If r is odd, then a((rm)^2+2m) = r for all m >= 1 and a(r^4 + r^3 + 5(r+1)^2/4) = r.
%H A276689 Chai Wah Wu, <a href="/A276689/b276689.txt">Table of n, a(n) for n = 0..10000</a>
%o A276689 (Python)
%o A276689 from sympy import continued_fraction_periodic
%o A276689 def A276689(n):
%o A276689     x = continued_fraction_periodic(0,1,n)
%o A276689     return min(x[1]) if len(x) > 1 else 0
%Y A276689 Cf. A031424, A003285, A091453, A096491.
%K A276689 nonn
%O A276689 0,3
%A A276689 _Chai Wah Wu_, Sep 28 2016