cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276695 P-defects p - N(p) of the congruence y^2 == x^3 - x^2 + 4*x - 4 (mod p) for primes p, where N(p) is the number of solutions given for p = prime(n) by A276664(n).

This page as a plain text file.
%I A276695 #12 Sep 17 2016 11:53:45
%S A276695 0,2,-1,-2,0,2,-6,4,-6,6,4,2,6,10,6,-6,-12,2,-2,12,2,-8,-6,-6,2,6,-14,
%T A276695 6,2,-6,-2,0,18,4,-6,-20,-22,10,-18,-6,12,-10,12,26,18,-8,16,10,6,14,
%U A276695 -6,24,14,0,-6,18,18,-20,26,6
%N A276695 P-defects p - N(p) of the congruence y^2 == x^3 - x^2 + 4*x - 4 (mod p) for primes p, where N(p) is the number of solutions given for p = prime(n) by A276664(n).
%H A276695 Seiichi Manyama, <a href="/A276695/b276695.txt">Table of n, a(n) for n = 1..10000</a>
%F A276695 a(n) = prime(n) - A276664(n), n >= 1, where A276664(n) is the number of solutions to the congruence y^2 == x^3 - x^2 + 4*x - 4 (mod prime(n)).
%F A276695 If prime(n) == 1 (mod 4), a(n) = A273163(n). If prime(n) == 3 (mod 4), a(n) = -A273163(n).
%Y A276695 Cf. A273163, A276664.
%K A276695 sign
%O A276695 1,2
%A A276695 _Seiichi Manyama_, Sep 14 2016