cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276709 Decimal expansion of the derivative of logarithmic integral at its positive real root.

This page as a plain text file.
%I A276709 #14 Feb 16 2025 08:33:36
%S A276709 2,6,8,4,5,1,0,3,5,0,8,2,0,7,0,7,6,5,2,5,0,2,3,8,2,6,4,0,4,8,7,2,3,8,
%T A276709 6,8,5,3,1,0,1,7,9,7,3,4,5,9,8,5,5,1,6,3,5,2,2,0,4,1,4,8,6,4,5,0,2,6,
%U A276709 4,1,1,3,3,6,3,1,7,6,7,2,4,4,8,9,3,6,2,5,0,2,2,0,1,2,5,4,8,5,2,1,5,3,6,5,0
%N A276709 Decimal expansion of the derivative of logarithmic integral at its positive real root.
%C A276709 Since the real root location of li(x) is the Soldner's constant A070769, this constant equals 1/log(A070769). It is also the inverse of the unique real root A091723 of the exponential integral function Ei(x).
%H A276709 Stanislav Sykora, <a href="/A276709/b276709.txt">Table of n, a(n) for n = 1..2000</a>
%H A276709 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LogarithmicIntegral.html">Logarithmic Integral</a>
%H A276709 Wikipedia, <a href="https://en.wikipedia.org/wiki/Logarithmic_integral_function">Logarithmic integral function</a>
%F A276709 Equals 1/log(A070769) and 1/A091723.
%e A276709 2.68451035082070765250238264048723868531017973459855163522041486450...
%t A276709 1/x/.FindRoot[ExpIntegralEi[x] == 0, {x, 1}, WorkingPrecision -> 104] (* _Vaclav Kotesovec_, Sep 27 2016 *)
%o A276709 (PARI) li(z) = {my(c=z+0.0*I); \\ Computes li(z) for any complex z
%o A276709 if(imag(c)<0,return(-Pi*I-eint1(-log(c))),return(+Pi*I-eint1(-log(c))));}
%o A276709 a = 1/log(solve(x=1.1,2.0,real(li(x)))) \\ Computes this constant
%Y A276709 Cf. A070769, A091723, A257821.
%K A276709 nonn,cons
%O A276709 1,1
%A A276709 _Stanislav Sykora_, Sep 15 2016