A276710 Composite numbers m such that Product_{k=0..m} binomial(m,k) is divisible by m^(m-1).
36, 40, 63, 80, 84, 90, 105, 108, 132, 144, 150, 154, 160, 165, 168, 175, 176, 180, 182, 195, 198, 200, 208, 210, 220, 260, 264, 270, 273, 275, 280, 286, 288, 297, 300, 306, 308, 312, 315, 320, 324, 330, 340, 351, 357, 360, 364, 374, 378, 380, 385, 390
Offset: 1
Keywords
Examples
Since 36 is composite and 36^35 divides Product_{k=1..36} binomial(36,k), 36 is a member. In addition, it turns out that 36^36 also divides the product.
Links
- Stanislav Sykora and Chai Wah Wu, Table of n, a(n) for n = 1..10000, terms for n = 1..797 from Stanislav Sykora
- Hagen von Eitzen, C source code for fast computation
- Hagen von Eitzen, Some Results About Sequence A276710
Programs
-
Mathematica
Select[DeleteCases[Range[2, 400], p_ /; PrimeQ@ p], Divisible[Product[Binomial[#, k], {k, 0, #}], #^(# - 1)] &] (* Michael De Vlieger, Sep 16 2016 *)
-
PARI
generator() = { /* Operates on two pre-defined integer vectors a, b of the same size. a(n) receives the terms of this sequence, while b(n) receives 0 if n^n|Product(binomial(n,k)), or 1 otherwise, and serves exclusively to test the conjecture. */ my (m=1,n=0,p);for(k=1,#a,a[k]=0;b[k]=0); while(1,m++;p=prod(k=1,m-1,binomial(m,k)); if((p%m^(m-1)==0)&&(!isprime(m)),n++;a[n]=m; if(p%m^m==0,b[n]=0,b[n]=1);if(n==#a,break))); } a=vector(1000);b=a;generator(); a /* Displays the result. Note: execution was interrupted due to excessive execution time */
-
Python
from itertools import islice from math import comb from sympy import nextprime def A276710_gen(): # generator of terms p, q = 3, 5 while True: for m in range(p+1,q): r = m**(m-1) c = 1 for k in range(m+1): c = c*comb(m,k) % r if c == 0: yield m p, q = q, nextprime(q) A276710_list = list(islice(A276710_gen(),40)) # Chai Wah Wu, Jun 08 2022
Comments