This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276730 #37 Oct 24 2018 08:08:03 %S A276730 2,3,7,7,11,7,15,19,23,39,31,39,31,43,47,39,59,71,67,71,79,79,83,79, %T A276730 79,103,103,107,103,127,127,131,159,139,135,151,135,163,167,199,179, %U A276730 199,191,207,199,199,211,223,227,199,207,239,271,251,255,263,295,271,295,271 %N A276730 Number of solutions to y^2 == x^3 + 4*x (mod p) as p runs through the primes. %C A276730 This elliptic curve corresponds to a weight 2 newform which is an eta-quotient, namely, (eta(4t)*eta(8t))^2, see Theorem 2 in Martin & Ono. %C A276730 It appears that a(n) = prime(n) iff prime(n) == 2 or 3 (mod 4). - _Robert Israel_, Sep 28 2016 This is true due to the L-function of this elliptic curve. See A278720. - _Wolfdieter Lang_, Dec 22 2016 %C A276730 The rational solutions of y^2 = x^3 + 4*x are (x,y) = (0,0), (2,4), (2,-4). See the Keith Conrad link, Corollary 3.17., p. 9. - _Wolfdieter Lang_, Dec 01 2016 %C A276730 For the p-defects p - N(p) see A278720. - _Wolfdieter Lang_, Dec 22 2016 %H A276730 Seiichi Manyama, <a href="/A276730/b276730.txt">Table of n, a(n) for n = 1..10000</a> %H A276730 Keith Conrad, Expository papers, <a href="http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/descent.pdf"> Proofs by Descent</a>. %H A276730 Yves Martin and Ken Ono, <a href="http://dx.doi.org/10.1090/S0002-9939-97-03928-2">Eta-Quotients and Elliptic Curves</a>, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176. %F A276730 a(n) is the number of solutions of the congruence y^2 == x^3 + 4*x (mod prime(n)), n >= 1. %F A276730 a(n) is also the number %F A276730 of solutions of the congruence y^2 == x^3 - x (mod prime(n)), n >= 1. - _Wolfdieter Lang_, Dec 22 2016 (See the Cremona link given in A278720). %e A276730 The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. %e A276730 The solutions (x, y) of y^2 == x^3 + 4*x (mod prime(n)) begin: %e A276730 n, prime(n), a(n)\ solutions (x, y) %e A276730 1, 2, 2: (0, 0), (1, 1) %e A276730 2, 3, 3: (0, 0), (2, 1), (2, 2) %e A276730 3, 5, 7: (0, 0), (1, 0), (2, 1), %e A276730 (2, 4), (3, 2), (3, 3), %e A276730 (4, 0) %e A276730 4, 7, 7: (0, 0), (2, 3), (2, 4), %e A276730 (3, 2), (3, 5), (6, 3), %e A276730 (6, 4) %e A276730 ... %e A276730 The solutions (x, y) of y^2 == x^3 - x (mod prime(n)) begin: %e A276730 n, prime(n), a(n)\ solutions (x, y) %e A276730 1, 2, 2: (0, 0), (1, 0); %e A276730 2, 3, 3: (0, 0), (1, 0), (2, 0); %e A276730 3, 5, 7: (0, 0), (1, 0), (2, 1), %e A276730 (2, 4), (3, 2), (3, 3), %e A276730 (4, 0); %e A276730 4, 7, 7: (0, 0), (1, 0), (4, 2), %e A276730 (4, 5), (5, 1), (5, 6), %e A276730 (6, 0); %e A276730 ... - _Wolfdieter Lang_, Dec 22 2016 %p A276730 seq(nops([msolve(y^2-x^3-4*x, ithprime(n))]),n=1..100); # _Robert Israel_, Sep 28 2016 %o A276730 (Ruby) %o A276730 require 'prime' %o A276730 def A(a3, a2, a4, a6, n) %o A276730 ary = [] %o A276730 Prime.take(n).each{|p| %o A276730 a = Array.new(p, 0) %o A276730 (0..p - 1).each{|i| a[(i * i + a3 * i) % p] += 1} %o A276730 ary << (0..p - 1).inject(0){|s, i| s + a[(i * i * i + a2 * i * i + a4 * i + a6) % p]} %o A276730 } %o A276730 ary %o A276730 end %o A276730 def A276730(n) %o A276730 A(0, 0, 4, 0, n) %o A276730 end %Y A276730 Cf. A095978, A272207, A278720. %K A276730 nonn %O A276730 1,1 %A A276730 _Seiichi Manyama_, Sep 16 2016