This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276736 #21 Sep 08 2022 08:46:17 %S A276736 1,2,5,11,7,10,9,13,2,14,13,55,15,18,7,57,19,4,21,77,15,26,25,65,38, %T A276736 30,58,99,31,14,33,15,65,38,9,11,39,42,25,91,43,30,45,13,14,50,49,95, %U A276736 66,76,95,165,55,116,91,117,35,62,61,77,63,66,18,247,21,130 %N A276736 a(n) = numerator of Sum_{d|n} tau(d)/d. %C A276736 Also numerators of (Sum_{d|n} sigma(d)) / n. %H A276736 Jaroslav Krizek, <a href="/A276736/b276736.txt">Table of n, a(n) for n = 1..1000</a> %F A276736 For all n we have: n = (Sum_{d|n} sigma(d)) / (Sum_{d|n} tau(d)/d) = (Sum_{d|n} d*tau(n/d)) / (Sum_{d|n} tau(d)/d) = A007429(n) * A276737(n) / a(n). %e A276736 For n=6; {d_6} = {1, 2, 3, 6}; {tau(d)_6} = {1, 2, 2, 4}; Sum_{d|6} tau(d)/d = 1/1 + 2/2 + 2/3 + 4/6 = 20/6 = 10/3; a(6) = 10. %e A276736 For n=6; {d_6} = {1, 2, 3, 6}; {sigma(d)_6} = {1, 3, 4, 12}; (Sum_{d|6} sigma(d))/6 = (1+3+4+12)/6 = 10/3; a(6) = 10. %t A276736 Table[Numerator@ Total[DivisorSigma[0, #]/#] &@ Divisors@ n, {n, 66}] (* _Michael De Vlieger_, Sep 16 2016 *) %o A276736 (Magma) [Numerator(&+[NumberOfDivisors(d)/d: d in Divisors(n)]): n in [1..100]] %o A276736 (PARI) a(n) = numerator(sumdiv(n, d, numdiv(d)/d)); \\ _Michel Marcus_, Sep 16 2016 %Y A276736 Cf. A000005, A007429, A276737 (denominators). %K A276736 nonn,frac %O A276736 1,2 %A A276736 _Jaroslav Krizek_, Sep 16 2016