cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276744 G.f.: x = Sum_{n>=1} a(n) * [ Sum_{k>=1} k^n * x^k ]^n.

This page as a plain text file.
%I A276744 #8 Sep 29 2016 17:54:48
%S A276744 1,-2,13,-248,12526,-1568368,466802541,-321051272000,500039245711658,
%T A276744 -1737306124802148608,13308275973878544047746,
%U A276744 -222688458529322994469714944,8077969377058605224894763722940,-631225844487016628864332741755017216,105685667980009079816649620724931814050429
%N A276744 G.f.: x = Sum_{n>=1} a(n) * [ Sum_{k>=1} k^n * x^k ]^n.
%H A276744 Paul D. Hanna, <a href="/A276744/b276744.txt">Table of n, a(n) for n = 1..120</a>
%F A276744 G.f.: x = Sum_{n>=1} a(n) * [ Sum_{k=1..n} A008292(n,k) * x^k ]^n / (1-x)^(n*(n+1)), where A008292 are the Eulerian numbers.
%e A276744 G.f.: x = Sum_{n>=1} a(n) * (x + 2^n*x^2 + 3^n*x^3 +...+ k^n*x^k +...)^n.
%e A276744 The g.f. can be written using the Eulerian numbers like so:
%e A276744 x = x/(1-x)^2 - 2*(x + x^2)^2/(1-x)^6 + 13*(x + 4*x^2 + x^3)^3/(1-x)^12 - 248*(x + 11*x^2 + 11*x^3 + x^4)^4/(1-x)^20 + 12526*(x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)^5/(1-x)^30 - 1568368*(x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)^6/(1-x)^42 +...+ a(n)*[ Sum_{k=1..n} A008292(n,k) * x^k ]^n / (1-x)^(n*(n+1)) +...
%o A276744 (PARI) {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
%o A276744 A[#A] = -Vec(sum(m=1,#A,A[m]*sum(k=1,#A+1,k^m * x^k +x*O(x^#A))^m))[#A] ); A[n]}
%o A276744 for(n=1,30,print1(a(n),", "))
%Y A276744 Cf. A276743, A276745, A008292.
%K A276744 sign
%O A276744 1,2
%A A276744 _Paul D. Hanna_, Sep 29 2016