cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276746 G.f.: Sum_{n>=0} exp(-n*x) * [ Sum_{k>=1} k^n * x^k/k! ]^n.

This page as a plain text file.
%I A276746 #12 Sep 30 2016 22:46:35
%S A276746 1,1,1,3,11,59,439,4472,62935,1209430,32051191,1166861194,58721422238,
%T A276746 4088067759572,394939948283555,53103347018217191,9947926726521152127,
%U A276746 2605793744856238449900,954325686563453398851948,490307345827423220333318823,353233139353798743949103145806,357764578484543977966398255436596,509302875450935550273793437784438990,1020636223630190179625684042390508142277
%N A276746 G.f.: Sum_{n>=0} exp(-n*x) * [ Sum_{k>=1} k^n * x^k/k! ]^n.
%H A276746 Paul D. Hanna, <a href="/A276746/b276746.txt">Table of n, a(n) for n = 0..150</a>
%F A276746 G.f.: Sum_{n>=0} [ Sum_{k=1..n} S2(n,k) * x^k ]^n, where S2(n,k) = A008277(n,k) are the Stirling numbers of the second kind.
%e A276746 G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 11*x^4 + 59*x^5 + 439*x^6 + 4472*x^7 + 62935*x^8 + 1209430*x^9 + 32051191*x^10 + 1166861194*x^11 + 58721422238*x^12 +...
%e A276746 such that
%e A276746 A(x) = Sum_{n>=0} exp(-n*x)*(x + 2^n*x^2/2! + 3^n*x^3/3! +...+ k^n*x^k/k! +...)^n.
%e A276746 Explicitly,
%e A276746 A(x) = 1 + exp(-x) * (x + 2*x^2/2! + 3*x^3/3! + 4*x^4/4! + 5*x^5/5! +...) +
%e A276746 exp(-2*x) * (x + 4*x^2/2! + 9*x^3/3! + 16*x^4/4! + 25*x^5/5! +...)^2 +
%e A276746 exp(-3*x) * (x + 8*x^2/2! + 27*x^3/3! + 64*x^4/4! + 125*x^5/5! +...)^3 +
%e A276746 exp(-4*x) * (x + 16*x^2/2! + 81*x^3/3! + 256*x^4/4! + 625*x^5/5! +...)^4 +
%e A276746 exp(-5*x) * (x + 32*x^2/2! + 243*x^3/3! + 1024*x^4/4! + 3125*x^5/5! +...)^5 +
%e A276746 ...
%e A276746 The g.f. can be written using the Stirling2 numbers like so:
%e A276746 A(x) = 1 + x + (x + x^2)^2 + (x + 3*x^2 + x^3)^3 + (x + 7*x^2 + 6*x^3 + x^4)^4 + (x + 15*x^2 + 25*x^3 + 10*x^4 + x^5)^5 + (x + 31*x^2 + 90*x^3 + 65*x^4 + 15*x^5 + x^6)^6 + (x + 63*x^2 + 301*x^3 + 350*x^4 + 140*x^5 + 21*x^6 + x^7)^7 + (x + 127*x^2 + 966*x^3 + 1701*x^4 + 1050*x^5 + 266*x^6 + 28*x^7 + x^8)^8 +...+ [ Sum_{k=1..n} S2(n,k) * x^k ]^n +...
%o A276746 (PARI) {a(n) = my(A=1); A = sum(m=0, n+1, exp(-m*x +x*O(x^n)) * sum(k=1, n+1, k^m*x^k/k! +x*O(x^n))^m ); polcoeff(A, n)}
%o A276746 for(n=0,30, print1(a(n),", "))
%o A276746 (PARI) {a(n) = my(A = sum(m=0,n, sum(k=1,m, stirling(m, k, 2)*x^k +x*O(x^n) )^m )); polcoeff(A,n)}
%o A276746 for(n=0,30, print1(a(n),", "))
%Y A276746 Cf. A276743, A276747, A008277.
%K A276746 nonn
%O A276746 0,4
%A A276746 _Paul D. Hanna_, Sep 29 2016