cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276757 Infinite Fibonacci word on the alphabet {1,2,3,4,5}.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2
Offset: 1

Views

Author

Michel Dekking, Sep 17 2016

Keywords

Comments

Start with the infinite Fibonacci word A003849, which is 0100101001001010010... and replace each 0 by 1,2,3 and each 1 by 4,5.
The unique fixed point of the 4-block Fibonacci substitution 1 -> 12, 2 -> 3, 3 -> 45, 4 -> 12, 5 -> 3. Here the 4-blocks are coded as 0100 <-> 1, 1001 <-> 2, 0010 <-> 3, 0101 <-> 4, 1010 <-> 5.

Crossrefs

Formula

Let A(n) = floor(n*phi), B(n) = n + floor(n*phi), i.e., A and B are the lower and upper Wythoff sequences, A = A000201, B = A001950. Then a(n) = 1 if n = A(A(A(k))) for some k; a(n) = 2 if n = B(A(k)) for some k; a(n) = 3 if n = A(B(k)) for some k; a(n) = 4 if n = A(A(B(k))) for some k; a(n) = 5 if n = B(B(k)) for some k.