A276757 Infinite Fibonacci word on the alphabet {1,2,3,4,5}.
1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2
Offset: 1
Keywords
Links
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- Michel Dekking and Michael Keane, On the conjugacy class of the Fibonacci dynamical system, arXiv preprint arXiv:1608.04487 [math.DS], 2016.
Crossrefs
Formula
Let A(n) = floor(n*phi), B(n) = n + floor(n*phi), i.e., A and B are the lower and upper Wythoff sequences, A = A000201, B = A001950. Then a(n) = 1 if n = A(A(A(k))) for some k; a(n) = 2 if n = B(A(k)) for some k; a(n) = 3 if n = A(B(k)) for some k; a(n) = 4 if n = A(A(B(k))) for some k; a(n) = 5 if n = B(B(k)) for some k.
Comments