cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276761 Decimal expansion of the modulus of the fixed point of -exp(z) in C congruent with the branch K=1 of log(z)+2*Pi*K*i.

Original entry on oeis.org

4, 6, 3, 6, 2, 8, 4, 6, 3, 2, 7, 8, 6, 6, 2, 5, 1, 8, 9, 5, 4, 4, 9, 5, 2, 3, 1, 8, 0, 3, 4, 2, 0, 5, 3, 8, 7, 0, 4, 4, 6, 9, 9, 3, 5, 5, 6, 7, 7, 5, 7, 5, 2, 5, 2, 9, 6, 3, 9, 3, 5, 1, 0, 1, 9, 3, 0, 2, 5, 4, 4, 9, 3, 1, 0, 4, 5, 0, 9, 4, 5, 2, 4, 9, 4, 6, 6, 2, 2, 6, 1, 9, 3, 7, 3, 2, 8, 7, 8, 3, 9, 2, 7, 5, 4
Offset: 1

Views

Author

Stanislav Sykora, Nov 12 2016

Keywords

Comments

Modulus of z_2 = A276759+i*A276760. See A276759 for more information.

Examples

			4.636284632786625189544952318034205387044699355677575252963935...
		

Crossrefs

Fixed points of -exp(z): z_0: A030178, and z_2: A276759 (real part), A276760 (imaginary part).
Fixed points of +exp(z): z_1: A059526, A059527, A238274, and z_3: A277681, A277682, A277683.

Programs

  • Mathematica
    RealDigits[Norm[ProductLog[1, 1]], 10, 105][[1]] (* Jean-François Alcover, Nov 12 2016 *)
  • PARI
    default(realprecision,2050);eps=5.0*10^(default(realprecision))
    M(z,K)=log(-z)+2*Pi*K*I; \\ the convergent mapping (any K)
    K=1;z=1+I;zlast=z;
    while(1,z=M(z,K);if(abs(z-zlast)