A276763 Decimal expansion of the imaginary part of a fixed point of the logarithmic integral li(z) in C.
2, 0, 6, 5, 9, 2, 2, 2, 0, 2, 3, 7, 0, 6, 6, 2, 1, 8, 8, 9, 8, 8, 1, 0, 4, 6, 1, 1, 2, 5, 4, 1, 0, 8, 4, 3, 0, 0, 1, 4, 2, 4, 9, 8, 5, 3, 1, 9, 0, 0, 6, 7, 3, 2, 8, 3, 8, 5, 7, 9, 1, 1, 8, 0, 4, 5, 9, 8, 8, 5, 9, 4, 9, 3, 2, 6, 0, 6, 7, 7, 7, 7, 8, 3, 5, 5, 5, 4, 5, 7, 0, 2, 8, 2, 7, 1, 5, 9, 2, 8, 4, 6, 7, 8, 6
Offset: 1
Examples
2.06592220237066218898810461125410843001424985319006732838579118...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
RealDigits[Im[z/.FindRoot[LogIntegral[z] == z, {z, 2+I}, WorkingPrecision -> 100]]][[1]] (* Vaclav Kotesovec, Oct 30 2016 *)
-
PARI
\\ z may be t_INT, t_REAL, or t_COMPLEX except 0 or 1 li(z)= { my(sgn=(-1)^if(real(z)<1,imag(z)<0,imag(z)<=0)); sgn*Pi*I - eint1(-log(z)); } default(realprecision,2100); \\ Execution: Eps_= 4.0*10.0^(-default(realprecision)); z=1+I;zlast=0; \\ Initialize and iterate for(k=1,1e6,z=li(z);if(abs(z-zlast)
Comments