This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276789 #42 Jan 05 2025 19:51:41 %S A276789 4,3,4,2,4,3,4,4,3,4,2,4,3,4,3,4,2,4,3,4,4,3,4,2,4,3,4,2,4,3,4,4,3,4, %T A276789 2,4,3,4,3,4,2,4,3,4,4,3,4,2,4,3,4,4,3,4,2,4,3,4,3,4,2,4,3,4,4,3,4,2, %U A276789 4,3,4,2,4,3,4,4,3,4,2,4,3,4,3,4,2,4,3,4,4,3,4,2,4,3,4,3,4,2,4,3 %N A276789 First differences of A003145. %C A276789 The sequence of first differences of A003146 (the third of the trio A003144, A003145, A003146) is equal to A276788 + A276789 + 1. %C A276789 Also first differences of A278040.- _Wolfdieter Lang_, Dec 05 2018 %C A276789 From _Michel Dekking_, Mar 21 2019: (Start) %C A276789 (a(n)) is a fixed point of the tribonacci morphism on the alphabet {4,3,2}, i.e., the morphism given by 4 -> 43, 3 -> 42, 2 -> 4. %C A276789 To see this, let U := baca, V := baa, W := ba be the three return words of the letter b in the tribonacci word %C A276789 x = abacabaabacaba... = aUVUW... %C A276789 [See Justin & Vuillon (2000) for definition of return word. - _N. J. A. Sloane_, Sep 23 2019] %C A276789 Under the tribonacci morphism tau given by %C A276789 tau(a) = ab, tau(b) = ac, tau(c) = a %C A276789 one obtains %C A276789 tau(U) = acabaab = b^{-1} UV b, %C A276789 tau(V) = acabab = b^{-1} UW b, %C A276789 tau(W) = acab = b^{-1} U b, %C A276789 which is conjugate to the tribonacci morphism on the alphabet {U,V,W}. %C A276789 Since these words have lengths 4, 3, and 2, the result follows. %C A276789 (End) %H A276789 Robert Israel, <a href="/A276789/b276789.txt">Table of n, a(n) for n = 1..10608</a> %H A276789 Elena Barcucci, Luc Belanger and Srecko Brlek, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/42-4/quartbarcucci04_2004.pdf">On tribonacci sequences</a>, Fib. Q., 42 (2004), 314-320. See page 317. %H A276789 F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52. %H A276789 Jacques Justin and Laurent Vuillon, <a href="http://www.numdam.org/item/ITA_2000__34_5_343_0/">Return words in Sturmian and episturmian words</a>, RAIRO-Theoretical Informatics and Applications 34.5 (2000): 343-356. %H A276789 Wolfdieter Lang, <a href="https://arxiv.org/abs/1810.09787">The Tribonacci and ABC Representations of Numbers are Equivalent</a>, arXiv preprint arXiv:1810.09787 [math.NT], 2018. %F A276789 a(n) = A003145(n+1) - A003145(n) = A278040(n) - A278040(n-1) = 4 - A080843(n-1), for n >= 1. See eq. (20) of the W. Lang link. - _Wolfdieter Lang_, Dec 04 2018 %Y A276789 Cf. A003144, A003145, A003146, A080843, A276788, A278040. %K A276789 nonn,easy %O A276789 1,1 %A A276789 _N. J. A. Sloane_, Oct 14 2016