A276797 Partial sums of A276794.
0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 24, 24, 25
Offset: 0
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
- Jeffrey Shallit, Some Tribonacci conjectures, arXiv:2210.03996 [math.CO], 2022.
Crossrefs
Programs
-
Maple
M:=12; S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`; for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od: t0:=S[M]: # has 927 terms of tribonacci ternary word A080843 # get numbers of 0's, 1's, 2's N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0: L:=length(t0); for i from 1 to L do js := substring(t0, i..i); j:=convert(js,decimal,10); if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi; N0:=[op(N0),c0]; N1:=[op(N1),c1]; N2:=[op(N2),c2]; od: N0; N1; N2; # prints A276796, A276797, A276798 (except A276798 is off by 1 because it does not count the initial 0 in A003146). # N. J. A. Sloane, Jun 08 2018
Comments