This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276798 #33 Nov 19 2024 06:35:07 %S A276798 1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6, %T A276798 6,7,7,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,9,9,10,10,10,10,10,10,11,11,11, %U A276798 11,11,11,11,12,12,12,12,13,13,13,13,13,13,13,14,14,14,14,14,14,15,15,15,15,15 %N A276798 Partial sums of A276791. %C A276798 a(n+1) - 1 = z_C(n), where z_C(n) is the number of C numbers A276798 not exceeding n, for n >= 0, and z_C(-1) = 0. - _Wolfdieter Lang_, Dec 05 2018 %C A276798 Conjecture: 3*n - A140101(n) = a(n-1). - _N. J. A. Sloane_, Oct 26 2016 (added Mar 21 2019). This is true - see the Dekking et al. paper. - _N. J. A. Sloane_, Jul 22 2019 %H A276798 N. J. A. Sloane, <a href="/A276798/b276798.txt">Table of n, a(n) for n = 0..10000</a> %H A276798 F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52. %H A276798 Wolfdieter Lang, <a href="https://arxiv.org/abs/1810.09787">The Tribonacci and ABC Representations of Numbers are Equivalent</a>, arXiv preprint arXiv:1810.09787 [math.NT], 2018. %H A276798 Jeffrey Shallit, <a href="https://arxiv.org/abs/2210.03996">Some Tribonacci conjectures</a>, arXiv:2210.03996 [math.CO], 2022. %F A276798 a(n) = Sum_{k=0..n} A276791(k), for n >= 0. %F A276798 a(n) = n + 1 - (A276796(n) + A276797(n)). %F A276798 a(n) = 2*n + 1 - B(n), where B(n) = A278039(n), n >= 0. For a proof see the comment on z_C and Proposition 7, eq. 43, of the W. Lang link given in A080843. - _Wolfdieter Lang_, Dec 05 2018 %p A276798 M:=12; %p A276798 S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`; %p A276798 for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od: %p A276798 t0:=S[M]: # has 927 terms of tribonacci ternary word A080843 %p A276798 # get numbers of 0's, 1's, 2's %p A276798 N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0: %p A276798 L:=length(t0); %p A276798 for i from 1 to L do %p A276798 js := substring(t0, i..i); %p A276798 j:=convert(js,decimal,10); %p A276798 if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi; %p A276798 N0:=[op(N0),c0]; N1:=[op(N1),c1]; N2:=[op(N2),c2]; %p A276798 od: %p A276798 N0; N1; N2; # prints A276796, A276797, A276798 (except A276798 is off by 1 because it does not count the initial 0 in A003146). # _N. J. A. Sloane_, Jun 08 2018 %Y A276798 A276793(n) + A276794(n) + A276791(n) = 1; %Y A276798 A276796(n) + A276797(n) + A276798(n) = n + 1. %Y A276798 Cf. A276798, A278039. %K A276798 nonn,easy %O A276798 0,5 %A A276798 _N. J. A. Sloane_, Oct 28 2016