This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276806 #26 Aug 12 2017 12:07:43 %S A276806 0,0,0,1,0,1,0,2,1,1,0,2,0,1,1,2,0,2,0,2,1,1,0,2,1,1,2,2,0,2,0,3,1,1, %T A276806 1,2,0,1,1,2,0,2,0,2,2,1,0,3,1,2,1,2,0,2,1,2,1,1,0,2,0,1,2,3,1,2,0,2, %U A276806 1,2,0,3,0,1,2,2,1,2,0,3,2,1,0,2,1,1,1,2,0,2,1,2,1,1,1,3,0,2,2,2 %N A276806 Height of the shortest binary factorization tree of n. %C A276806 Among all possible binary factorization trees of n we choose a tree with minimal height. The choice may not be unique. a(n) gives the height of the chosen tree. %C A276806 To compute the terms A001222 and A001221 could be used. %C A276806 The positions at which numbers (1,2,3) first appear are respectively (4,8,32). The latter sequence can be described by the formula b(n) = 2^(2^(n-1) + 1). %H A276806 Antti Karttunen, <a href="/A276806/b276806.txt">Table of n, a(n) for n = 1..10000</a> %H A276806 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A276806 a(n^2) = a(n) + 1. %e A276806 a(12) = 2 since 12 cannot be factored in a binary factorization tree of height less than 2, but it can be factored in a tree of height 2, e.g., %e A276806 12 %e A276806 / \ %e A276806 4 3 %e A276806 / \ %e A276806 2 2 %e A276806 Similarly, a(16) = 2: %e A276806 16 %e A276806 / \ %e A276806 / \ %e A276806 4 4 %e A276806 / \ / \ %e A276806 2 2 2 2 %e A276806 and a(40) = 2: %e A276806 40 %e A276806 / \ %e A276806 / \ %e A276806 4 10 %e A276806 / \ / \ %e A276806 2 2 2 5 %e A276806 and a(84) = 2: %e A276806 84 %e A276806 / \ %e A276806 / \ %e A276806 4 21 %e A276806 / \ / \ %e A276806 2 2 3 7 %o A276806 (PARI) a(n)=if(n>1,my(b=bigomega(n),c=(2^logint(b,2)!=b));logint(b,2)+c,0) \\ _David A. Corneth_, Oct 01 2016 %o A276806 (PARI) A276806(n) = { my(m=0,h); if((1==n)||isprime(n),0,fordiv(n,d,if((d>1)&&(d<n),h = 1+max(A276806(d),A276806(n/d)); if(!m || (h < m),m=h)))); m; }; \\ _Antti Karttunen_, Aug 12 2017 %Y A276806 Cf. A001221, A001222, A005171. %K A276806 nonn %O A276806 1,8 %A A276806 _Yuriy Sibirmovsky_, Sep 17 2016