A276738
Irregular triangle read by rows: T(n,m) = coefficients in a power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space trajectory.
Original entry on oeis.org
-1, -1, 5, -1, 12, -32, -1, 14, 7, -126, 231, -1, 16, 16, -160, -160, 1280, -1792, -1, 18, 18, -198, 9, -396, 1716, -66, 2574, -12870, 14586, -1, 20, 20, -240, 20, -480, 2240, -240, -240, 6720, -17920, 2240, -35840, 129024, -122880, -1, 22, 22, -286, 22, -572, 2860, 11, -572, -286, 8580, -24310, -286, 4290, 8580, -97240, 184756, 715
Offset: 1
n/m 1 2 3 4 5 6 7
--------------------------------------------
1 | -1
2 | -1 5
3 | -1 12 -32
4 | -1 14 7 -126 231
5 | -1 16 16 -160 -160 1280 -1792
--------------------------------------------
R[1,Q] = -2*v_3*Q^3
R[2,Q] = -2*v_4*Q^4 + 10*v_3^2*Q^6
R[Q] = b*(1+b*(-2*v_3*Q^3)+b^2*(-2*v_4*Q^4 + 10*v_3^2*Q^6 ))+O(b^4)
Construct basis for R[4,Q]; List partitions: {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}; Transform Plus 2: {{v_6}, {v_5, v_3}, {v_4, v_4}, {v_4, v_3, v_3}, {v_3, v_3, v_3, v_3}}; Multiply: {v_6, v_5*v_3, v_4^2, v_4*v_3^2, v_3^4}; don't forget power of Q and factor of 2: {2*v_6*Q^6, 2*v_5*v_3*Q^8, 2*v_4^2*Q^8, 2*v_4*v_3^2*Q^10, 2*v_3^4*Q^12}.
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
TriangleRow[n_, rules_] := With[{term = Expand[rules[[n, 2]]]},
Coefficient[term, #] & /@ basis[n]]
With[{rules = RRules[10]}, TriangleRow[#, rules] & /@ Range[10]]
A276817
Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential precession.
Original entry on oeis.org
-1, 2, 6, -3, -16, 8, -48, 4, 30, -20, 140, 10, -140, 420, -5, -48, 36, -288, -24, 384, -1280, 12, -192, -96, 1920, -3840, 6, 70, -56, 504, 42, -756, 2772, -28, 504, 252, -5544, 12012, 14, -252, -252, 2772, 2772, -24024, 36036, -7, -96, 80, -800, -64, 1280, -5120, 48, -960, -480, 11520, -26880, -32, 640, 640, -7680
Offset: 0
n/m 1 2 3 4 5 6 7
------------------------------------------
0 | -1
1 | 2 6
2 | -3 -16 8 -48
3 | 4 30 -20 140 10 -140 420
------------------------------------------
Construction of F(2,_). List f(i,_) basis sets: {f(1,_)={2*Q^3*v_3},f(2,_)= {2*Q^4*v_4, 2*Q^6*v_3^2}}; Integrate and join: F(2,_)={(1/r0^2)*(Q/r0)^2,2*Q^3*v_3*(1/2/r0^2)*(Q/r0),2*Q^4*v_4*(1/2/r0^2), 2*Q^6*v_3^2*(1/2/r0^2)}={Q^2/r0^4,Q^4*v_3/r0^3,Q^4*v_4/r0^2,Q^6*v_3^2/r0^2}.
dy Expansion to second order: dy=dx(-(1/r0^2)+b^2*(2*Q/r0^3 + 6*Q^3*v_3/r0^2)+b^3*(-3*Q^2/r0^4 - 16*Q^4*v_3/r0^3 - 48*Q^6*v_3^2/r0^2 + 8*Q^4*v_4/r0^2)+O(b^3).
Cancellation of higher orders 1 to infinity and closed orbits. Kepler values {r0 = 1, v_n := ((n - 1)/4)*(-1)^n} yield dy = -dx. Harmonic oscillator values {r0 = Sqrt[2], v_n := ((-1)^n*(n + 1)/4/2)/sqrt[2]^n} yield dy = -(1/2)*dx. Parity symmetric conjectured values {r0=Sqrt[1/R],v_n odd n := 0,v_n even n := R^(n/2 - 1)*(n/8)} yield dy = -R*dx (see attached image "Pentagonal Orbits")?
- R. M. Wald, General Relativity, University of Chicago press, 2010, pages 139-143.
- J.A. Wheeler, A Journey into Gravity and Spacetime, Scientific American Library, 1990, pages 168-183.
- Bradley Klee, Plane Pendulum and Beyond by Phase Space Geometry, arXiv:1605.09102 [physics.class-ph], 2016.
- Bradley Klee, Estimating Planetary Perihelion Precession, Wolfram Demonstrations Project, 2106.
- Bradley Klee, Exact and Approximate Relativistic Corrections to the Orbital Precession of Mercury, Wolfram Demonstrations Project, 2016.
- Bradley Klee, Pentagonal Orbits
- Seqfans, Another planetary sequence, Seqfans mailing list, September 2016.
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
-> ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
ydot[n__] := Expand[Normal@Series[1/(r0 + q)^2 /. {q -> R[n] Q} /. RRules[n], {b, 0, n}]]
dy[n_] := Expand@Normal@Series[ydot[n]/xDot[n], {b, 0, n}]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
extendedBasis[n_] :=Flatten[(1/2/r0^2) (Q/r0)^(n - #) basis[#] & /@ Range[0, n]]
TriangleRow[n_, func_] := Coefficient[func, b^n #] & /@ extendedBasis[n]
With[{dy5 = dy[5]}, TriangleRow[#, dy5] /. v[_] -> 0 & /@ Range[0, 5]]
(*Kepler Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {r0 -> 1, Cos[] -> 0, v[n] :> ((n - 1)/4)*(-1)^n}
(*Harmonic Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n] :> ((-1)^n*(n + 1)/4/2)/Sqrt[2]^n, r0 -> Sqrt[2]}
(*Conjecture*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n /; OddQ[n]] :> 0, v[n_] :> RR^(n/2 - 1)*n/8, r0 -> Sqrt[1/RR]}
A276814
Irregular triangle read by rows T(n,m), coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space angular velocity.
Original entry on oeis.org
-3, -4, 6, -5, 22, -30, -6, 36, 16, -168, 192, -7, 54, 46, -294, -266, 1428, -1386, -8, 76, 64, -480, 30, -832, 2560, -128, 3520, -12800, 10752, -9, 102, 86, -738, 78, -1260, 4356, -594, -558, 11484, -23166, 3564, -42900, 118404, -87516, -10, 132, 112, -1080, 100, -1840, 7040, 48, -1680, -800, 18240, -40320, -760, 8640
Offset: 1
n/m 1 2 3 4 5 6 7
---------------------------------------------
1 | -3
2 | -4, 6
3 | -5, 22, -30
4 | -6, 36, 16, -168 192
5 | -7, 54, 46, -294 -266 1428 -1386
---------------------------------------------
Arbitrary Oscillator:
A276738,
A276815,
A276816,
A276817. Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
-> ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
TriangleRow[n_, fun_] := Coefficient[fun, b^n #] & /@ basis[n]
With[{xd = xDot[10]},TriangleRow[#, xd] /. v[_] -> 0 & /@ Range[10]]
A276815
Irregular triangle read by rows T(n,m), coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential time dependence.
Original entry on oeis.org
3, 4, -24, 5, -70, 210, 6, -96, -48, 960, -1920, 7, -126, -126, 1386, 1386, -12012, 18018, 8, -160, -160, 1920, -80, 3840, -17920, 640, -26880, 143360, -172032, 9, -198, -198, 2574, -198, 5148, -25740, 2574, 2574, -77220, 218790, -25740, 437580, -1662804, 1662804, 10, -240, -240, 3360, -240, 6720, -35840, -120, 6720, 3360
Offset: 1
n/m 1 2 3 4 5 6 7
------------------------------------------------
1 | 3
2 | 4 -24
3 | 5 -70 210
4 | 6 -96 -48 960 -1920
5 | 7 -126 -126 1386 1386 -12012 18018
------------------------------------------------
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
-> ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
dt[n_] := Expand[Normal@Series[1/xDot[n], {b, 0, n}]]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
TriangleRow[n_, fun_] := Coefficient[fun, b^n #] & /@ basis[n]
With[{dt10 = dt[10]}, TriangleRow[#, dt10] /. v[_] -> 0 & /@ Range[10]]
Showing 1-4 of 4 results.
Comments