cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276827 Primes p such that the greatest prime factor of 3*p+1 is at most 5.

Original entry on oeis.org

3, 5, 13, 53, 83, 853, 2083, 3413, 5333, 85333, 208333, 218453, 341333, 3495253, 5461333, 8533333, 13981013, 83333333, 853333333, 22369621333, 218453333333, 341333333333, 2236962133333, 3665038759253, 53333333333333, 91625968981333, 203450520833333, 1333333333333333
Offset: 1

Views

Author

Robert Israel, Sep 19 2016

Keywords

Comments

Prime(i) such that A087273(i) <= 5.

Crossrefs

Cf. A087273.
Contains A093671, A093674, and A093676.

Programs

  • Maple
    N = 10^20: # to get all terms <= N
    Res:= {}:
    for a from 0 to ilog2(floor((3*N+1)/5)) do
      twoa:= 2^a;
      for b from (a mod 2) by 2 do
        p:= (twoa*5^b-1)/3;
        if p > N then break fi;
        if isprime(p) then
          Res:= Res union {p};
        fi
    od od:
    sort(convert(Res,list));
  • Mathematica
    Select[Prime@ Range[10^6], FactorInteger[3 # + 1][[-1, 1]] <= 5 &] (* Michael De Vlieger, Sep 19 2016 *)
  • PARI
    list(lim)=my(v=List(),s,t); lim=lim\1*3 + 1; for(i=0,logint(lim\2,5), t=if(i%2,2,4)*5^i; while(t<=lim, if(isprime(p=t\3), listput(v,p)); t<<=2)); Set(v) \\ Charles R Greathouse IV, Sep 19 2016