cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276836 Denominator of modified von Mangoldt function defined recursively.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 15, 2, 1, 9, 1, 5, 21, 11, 1, 2, 5, 13, 9, 7, 1, 15, 1, 8, 11, 17, 35, 27, 1, 19, 39, 5, 1, 7, 1, 44, 45, 69, 1, 54, 7, 125, 17, 39, 1, 27, 55, 14, 57, 116
Offset: 1

Views

Author

Mats Granvik, Sep 20 2016

Keywords

Comments

See A276835 for the conjecture about the ratio A276835(n)/A276836(n).

Crossrefs

Programs

  • Mathematica
    Clear[t]; nn = 60; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[n/k == 2, 2, If[And[k == 1, n >= 3], n/Product[t[n, k + i], {i, 1, n - 1}]/Product[t[n - 2, k + i], {i, 1, n - 1}],If[Mod[n, k] == 0, t[n/k, 1], 1], 1]]; a = Table[t[n, 1], {n, 1, nn}]; Numerator[a]; Denominator[a]

Formula

Recurrence for the ratio A276835(n)/A276836(n):
t(1, 1) = 1, t(n, k) = if(n/k = 2 then 2 else if(and(k == 1, n >= 3), n/(Product_{i = 1..n-1} t(n, k + i))/(Product_{i = 1..n-1} t(n, k + i)) else if(mod(n, k) = 0 then t(n/k, 1) else 1) else 1)).