cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276837 Number A(n,k) of permutations of [n] such that for each cycle c the smallest integer interval containing all elements of c has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.

This page as a plain text file.
%I A276837 #16 May 09 2019 18:27:15
%S A276837 1,1,0,1,1,0,1,1,1,0,1,1,2,1,0,1,1,2,3,1,0,1,1,2,6,5,1,0,1,1,2,6,12,8,
%T A276837 1,0,1,1,2,6,24,25,13,1,0,1,1,2,6,24,60,57,21,1,0,1,1,2,6,24,120,150,
%U A276837 124,34,1,0,1,1,2,6,24,120,360,399,268,55,1,0
%N A276837 Number A(n,k) of permutations of [n] such that for each cycle c the smallest integer interval containing all elements of c has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%C A276837 The sequence of column k satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.
%H A276837 Alois P. Heinz, <a href="/A276837/b276837.txt">Antidiagonals n = 0..30, flattened</a>
%H A276837 Alice L. L. Gao, Sergey Kitaev, <a href="https://arxiv.org/abs/1903.08946">On partially ordered patterns of length 4 and 5 in permutations</a>, arXiv:1903.08946 [math.CO], 2019
%F A276837 A(n,k+1) - A(n,k) = A263757(n,k) for n>0.
%e A276837 Square array A(n,k) begins:
%e A276837   1, 1,  1,   1,    1,    1,    1,     1,     1, ...
%e A276837   0, 1,  1,   1,    1,    1,    1,     1,     1, ...
%e A276837   0, 1,  2,   2,    2,    2,    2,     2,     2, ...
%e A276837   0, 1,  3,   6,    6,    6,    6,     6,     6, ...
%e A276837   0, 1,  5,  12,   24,   24,   24,    24,    24, ...
%e A276837   0, 1,  8,  25,   60,  120,  120,   120,   120, ...
%e A276837   0, 1, 13,  57,  150,  360,  720,   720,   720, ...
%e A276837   0, 1, 21, 124,  399, 1050, 2520,  5040,  5040, ...
%e A276837   0, 1, 34, 268, 1145, 3192, 8400, 20160, 40320, ...
%Y A276837 Columns k=0-10 give: A000007, A000012, A000045(n+1), A214663, A276838, A276839, A276840, A276841, A276842, A276843, A276844.
%Y A276837 Main diagonal gives A000142.
%Y A276837 Cf. A263757, A276719.
%K A276837 nonn,tabl
%O A276837 0,13
%A A276837 _Alois P. Heinz_, Sep 20 2016