This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276845 #18 May 25 2024 15:39:04 %S A276845 1,2,5,6,40,47,49,58,67,142,170,173,232,530,539,559,1651,1858,2695, %T A276845 6257,6714,8854,15066,15091,16890,51366,85249,135906 %N A276845 Numbers k such that (25*10^k - 73) / 3 is prime. %C A276845 For k > 1, numbers k such that the digit 8 followed by k-2 occurrences of the digit 3 followed by the digits 09 is prime (see Example section). %C A276845 a(29) > 2*10^5. %H A276845 Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>. %H A276845 Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 83w09</a>. %e A276845 2 is in this sequence because (25*10^2 - 73) / 3 = 809 is prime. %e A276845 Initial terms and associated primes: %e A276845 a(1) = 1, 59; %e A276845 a(2) = 2, 809; %e A276845 a(3) = 5, 833309; %e A276845 a(4) = 6, 8333309; %e A276845 a(5) = 40, 83333333333333333333333333333333333333309, etc. %t A276845 Select[Range[0, 100000], PrimeQ[(25*10^# - 73) / 3] &] %o A276845 (PARI) is(n) = ispseudoprime((25*10^n - 73) / 3); \\ _Altug Alkan_, Sep 20 2016 %o A276845 (Magma) [n: n in [0..500] | IsPrime((25*10^n - 73) div 3)]; // _Vincenzo Librandi_, Sep 22 2016 %Y A276845 Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269. %K A276845 nonn,more %O A276845 1,2 %A A276845 _Robert Price_, Sep 20 2016 %E A276845 a(28) from _Robert Price_, Sep 22 2019