cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276846 Numbers k such that (4*10^k + 143) / 3 is prime.

This page as a plain text file.
%I A276846 #17 Jun 02 2024 09:28:43
%S A276846 1,2,3,4,7,9,15,21,22,44,49,53,63,127,145,393,856,1006,1883,2263,5684,
%T A276846 13324,14291,27435,38897,114076
%N A276846 Numbers k such that (4*10^k + 143) / 3 is prime.
%C A276846 For k > 1, numbers k such that the digit 1 followed by k-2 occurrences of the digit 3 followed by the digits 81 is prime (see Example section).
%C A276846 a(27) > 2*10^5.
%H A276846 Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.
%H A276846 Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 13w81</a>.
%e A276846 2 is in this sequence because (4*10^2 + 143) / 3 = 1381 is prime.
%e A276846 Initial terms and associated primes:
%e A276846 a(1) = 1, 61;
%e A276846 a(2) = 2, 181;
%e A276846 a(3) = 3, 1381;
%e A276846 a(4) = 4, 13381;
%e A276846 a(5) = 7, 13333381, etc.
%t A276846 Select[Range[0, 100000], PrimeQ[(4*10^# + 143) / 3] &]
%o A276846 (PARI) is(n) = ispseudoprime((4*10^n + 143) / 3); \\ _Altug Alkan_, Sep 20 2016
%o A276846 (Magma) [n: n in [0..500] | IsPrime((4*10^n+143) div 3)]; // _Vincenzo Librandi_, Sep 22 2016
%Y A276846 Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
%K A276846 nonn,more
%O A276846 1,2
%A A276846 _Robert Price_, Sep 20 2016
%E A276846 a(26) from _Robert Price_, Mar 05 2018