This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276846 #17 Jun 02 2024 09:28:43 %S A276846 1,2,3,4,7,9,15,21,22,44,49,53,63,127,145,393,856,1006,1883,2263,5684, %T A276846 13324,14291,27435,38897,114076 %N A276846 Numbers k such that (4*10^k + 143) / 3 is prime. %C A276846 For k > 1, numbers k such that the digit 1 followed by k-2 occurrences of the digit 3 followed by the digits 81 is prime (see Example section). %C A276846 a(27) > 2*10^5. %H A276846 Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>. %H A276846 Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 13w81</a>. %e A276846 2 is in this sequence because (4*10^2 + 143) / 3 = 1381 is prime. %e A276846 Initial terms and associated primes: %e A276846 a(1) = 1, 61; %e A276846 a(2) = 2, 181; %e A276846 a(3) = 3, 1381; %e A276846 a(4) = 4, 13381; %e A276846 a(5) = 7, 13333381, etc. %t A276846 Select[Range[0, 100000], PrimeQ[(4*10^# + 143) / 3] &] %o A276846 (PARI) is(n) = ispseudoprime((4*10^n + 143) / 3); \\ _Altug Alkan_, Sep 20 2016 %o A276846 (Magma) [n: n in [0..500] | IsPrime((4*10^n+143) div 3)]; // _Vincenzo Librandi_, Sep 22 2016 %Y A276846 Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269. %K A276846 nonn,more %O A276846 1,2 %A A276846 _Robert Price_, Sep 20 2016 %E A276846 a(26) from _Robert Price_, Mar 05 2018