This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276857 #11 Mar 09 2019 05:16:36 %S A276857 2,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,2, %T A276857 3,3,2,3,3,2,3,3,2,3,3,2,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,2,3,3,2, %U A276857 3,3,2,3,3,2,3,3,2,3,3,2,3,2,3,3,2,3 %N A276857 First differences of the Beatty sequence A022841 for sqrt(7). %C A276857 From _Michel Dekking_, Mar 09 2019: (Start) %C A276857 This homogeneous Sturmian sequence, with the first entry removed, is fixed point of the morphism on {2,3} given by %C A276857 2 -> 32332332332332 %C A276857 3 -> 32332332332332323. %C A276857 This follows since sqrt(7)-2 has a periodic continued fraction expansion with period [1,1,1,4], see, e.g., Corollary 9.1.6 in Allouche and Shallit. (End) %D A276857 J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 286. %H A276857 Clark Kimberling, <a href="/A276857/b276857.txt">Table of n, a(n) for n = 1..10000</a> %F A276857 a(n) = floor(n*r) - floor(n*r - r), where r = sqrt(7), n >= 1. %t A276857 z = 500; r = Sqrt[7]; b = Table[Floor[k*r], {k, 0, z}] (* A022841 *) %t A276857 Differences[b] (* A276857 *) %Y A276857 Cf. A022841, A276873. %K A276857 nonn,easy %O A276857 1,1 %A A276857 _Clark Kimberling_, Sep 24 2016