This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276864 #31 Sep 08 2022 08:46:17 %S A276864 3,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4, %T A276864 3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4, %U A276864 3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3 %N A276864 First differences of the Beatty sequence A001952 for 2 + sqrt(2). %C A276864 Shifted by 1 (as one should) this is the unique fixed point of the morphism 3 -> 34, 4 -> 343. See A159684. - _Michel Dekking_, Aug 25 2019 %H A276864 Andrew Howroyd, <a href="/A276864/b276864.txt">Table of n, a(n) for n = 1..1000</a> %F A276864 a(n) = floor(n*r) - floor(n*r - r), where r = 2 + sqrt(2), n >= 1. %F A276864 a(n) = 2 + floor(n*sqrt(2)) - floor((n-1)*sqrt(2)). - _Andrew Howroyd_, Feb 15 2018 %t A276864 z = 500; r = 2+Sqrt[2]; b = Table[Floor[k*r], {k, 0, z}]; (* A001952 *) %t A276864 Differences[b] (* A276864 *) %o A276864 (PARI) a(n) = 2 + sqrtint(2*n^2) - sqrtint(2*(n-1)^2) \\ _Andrew Howroyd_, Feb 15 2018 %o A276864 (Magma) [Floor(n*(2 + Sqrt(2))) - Floor((n-1)*(2 + Sqrt(2))): n in [1..100]]; // _G. C. Greubel_, Aug 16 2018 %Y A276864 Cf. A001952, A006337, A276882. %K A276864 nonn,easy %O A276864 1,1 %A A276864 _Clark Kimberling_, Sep 24 2016 %E A276864 Name corrected by _Michel Dekking_, Aug 25 2019