This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276871 #18 Feb 14 2024 17:27:35 %S A276871 1,10,19,28,37,48,57,66,75,86,95,104,113,124,133,142,151,162,171,180, %T A276871 189,198,209,218,227,236,247,256,265,274,285,294,303,312,323,332,341, %U A276871 350,359,370,379,388,397,408,417,426,435,446,455,464,473,484,493,502 %N A276871 Sums-complement of the Beatty sequence for sqrt(5). %C A276871 The sums-complement of a sequence s(1), s(2), ... of positive integers is introduced here as the set of numbers c(1), c(2), ... such that no c(n) is a sum s(j)+s(j+1)+...+s(k) for any j and k satisfying 1 <= j <= k. If this set is not empty, the term "sums-complement" also applies to the (possibly finite) sequence of numbers c(n) arranged in increasing order. In particular, the difference sequence D(r) of a Beatty sequence B(r) of an irrational number r > 2 has an infinite sums-complement, abbreviated as SC(r) in the following table: %C A276871 r B(r) D(r) SC(r) %C A276871 ---------------------------------------------------- %C A276871 sqrt(5) A022839 A081427 A276871 %C A276871 sqrt(6) A022840 A276856 A276872 %C A276871 sqrt(7) A022841 A276857 A276873 %C A276871 sqrt(8) A022842 A276858 A276874 %C A276871 e A022843 A276859 A276875 %C A276871 2*e A276853 A276860 A276876 %C A276871 Pi A022844 A063438 A276877 %C A276871 2*Pi A028130 A276861 A276878 %C A276871 1+sqrt(2) A003151 A276862 A276879 %C A276871 1+sqrt(3) A054088 A007538 A276880 %C A276871 1+sqrt(5) A276854 A276863 A276881 %C A276871 2+sqrt(2) A001952 A276864 A276882 %C A276871 2+sqrt(3) A003512 A276865 A276883 %C A276871 2+sqrt(5) A004976 A276866 A276884 %C A276871 1+tau A001950 2 + A003849 A276885 %C A276871 2+tau A003231 A276867 A276886 %C A276871 3+tau A276855 A276868 A276887 %C A276871 2+sqrt(1/2) A182769 A276869 A276888 %C A276871 sqrt(2)+sqrt(3) A110117 A276870 A276889 %C A276871 From _Jeffrey Shallit_, Aug 15 2023: (Start) %C A276871 Simpler description: this sequence represents those positive integers that CANNOT be expressed as a difference of two elements of A022839. %C A276871 There is a 20-state Fibonacci automaton for the terms of this sequence (see a276871.pdf). It takes as input the Zeckendorf representation of n and accepts iff n is a member of A276871. (End) %H A276871 Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, <a href="https://arxiv.org/abs/2402.08331">Beatty Sequences for a Quadratic Irrational: Decidability and Applications</a>, arXiv:2402.08331 [math.NT], 2024. See p. 16. %H A276871 Jeffrey Shallit, <a href="/A276871/a276871.pdf">Fibonacci automaton for A276871</a> %H A276871 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %e A276871 The Beatty sequence for sqrt(5) is A022839 = (0,2,4,6,8,11,13,15,...), with difference sequence s = A081427 = (2,2,2,2,3,2,2,2,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,6,7,8,9,11,12,...), with complement (1,10,19,28,37,...). %t A276871 z = 500; r = Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A022839 *) %t A276871 t = Differences[b]; (* A081427 *) %t A276871 c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}]; %t A276871 u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]]; %t A276871 w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276871 *) %Y A276871 Cf. A022839, A081427. %K A276871 nonn,easy %O A276871 1,2 %A A276871 _Clark Kimberling_, Sep 24 2016