This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276872 #4 Sep 26 2016 21:39:51 %S A276872 1,6,11,16,21,28,33,38,43,50,55,60,65,70,77,82,87,92,99,104,109,114, %T A276872 119,126,131,136,141,148,153,158,163,168,175,180,185,190,197,202,207, %U A276872 212,217,224,229,234,239,246,251,256,261,268,273,278,283,288,295,300 %N A276872 Sums-complement of the Beatty sequence for sqrt(6). %C A276872 See A276871 for a definition of sums-complement and guide to related sequences. %H A276872 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %e A276872 The Beatty sequence for sqrt(6) is A022840 = (0, 2, 4, 7, 9, 12, 14, 17,...), with difference sequence s = A276856 = (2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,7,8,9,10,12,...), with complement (1,6,11,16,21,...). %t A276872 z = 500; r = Sqrt[6]; b = Table[Floor[k*r], {k, 0, z}]; (* A022840 *) %t A276872 t = Differences[b]; (* A276856 *) %t A276872 c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}]; %t A276872 u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]]; %t A276872 w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276872 *) %Y A276872 Cf. A022840, A276856, A276871. %K A276872 nonn,easy %O A276872 1,2 %A A276872 _Clark Kimberling_, Sep 26 2016