A276873 Sums-complement of the Beatty sequence for sqrt(7).
1, 4, 9, 12, 17, 20, 25, 28, 33, 36, 41, 46, 49, 54, 57, 62, 65, 70, 73, 78, 81, 86, 91, 94, 99, 102, 107, 110, 115, 118, 123, 128, 131, 136, 139, 144, 147, 152, 155, 160, 163, 168, 173, 176, 181, 184, 189, 192, 197, 200, 205, 208, 213, 218, 221, 226, 229
Offset: 1
Examples
The Beatty sequence for sqrt(7) is A022841 = (0,2,5,7,10,13,...), with difference sequence s = A276857 = (2,3,2,3,3,2,3,3,2,3,3,2,3,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,6,7,8,10,11,13,...), with complement (1,4,9,12,17,...).
Links
- Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024. See p. 16.
- Index entries for sequences related to Beatty sequences
Comments