This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276874 #7 Sep 30 2016 13:22:34 %S A276874 1,4,7,10,13,18,21,24,27,30,35,38,41,44,47,52,55,58,61,64,69,72,75,78, %T A276874 81,86,89,92,95,100,103,106,109,112,117,120,123,126,129,134,137,140, %U A276874 143,146,151,154,157,160,163,168,171,174,177,180,185,188,191,194 %N A276874 Sums-complement of the Beatty sequence for sqrt(8). %C A276874 See A276871 for a definition of sums-complement and guide to related sequences. %H A276874 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %e A276874 The Beatty sequence for sqrt(8) is A022842 = (0,2,5,8,11,14,16,...), with difference sequence s = A276858 = (2,3,3,3,3,2,3,3,3,3,3,2,3,3,3,3,3,2,3,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,5,6,8,9,11,12, 14,...), with complement (1,4,7,10,13,18,...) %t A276874 z = 500; r = Sqrt[8]; b = Table[Floor[k*r], {k, 0, z}]; (* A022842 *) %t A276874 t = Differences[b]; (* A276858 *) %t A276874 c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}]; %t A276874 u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]]; %t A276874 w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w] (* A276874 *) %Y A276874 Cf. A022842, A276858, A276871. %K A276874 nonn,easy %O A276874 1,2 %A A276874 _Clark Kimberling_, Sep 27 2016