This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276875 #10 Jul 27 2024 02:53:49 %S A276875 1,4,7,12,15,18,23,26,31,34,37,42,45,50,53,56,61,64,69,72,75,80,83,88, %T A276875 91,94,99,102,105,110,113,118,121,124,129,132,137,140,143,148,151,156, %U A276875 159,162,167,170,175,178,181,186,189,194,197,200,205,208,211,216 %N A276875 Sums-complement of the Beatty sequence for e. %C A276875 See A276871 for a definition of sums-complement and guide to related sequences. %H A276875 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %e A276875 The Beatty sequence for e is A022843 = (0,2,5,8,10,13,16,...), with difference sequence s = A276859 = (2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,5,6,8,9,10,12,13,...), with complement (1,4,7,12,15,...). %t A276875 z = 500; r = E; b = Table[Floor[k*r], {k, 0, z}]; (* A022843 *) %t A276875 t = Differences[b]; (* A276859 *) %t A276875 c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}]; %t A276875 u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]]; %t A276875 w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w] (* A276875 *) %Y A276875 Cf. A022843, A276859, A276871. %K A276875 nonn,easy %O A276875 1,2 %A A276875 _Clark Kimberling_, Sep 27 2016