This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276879 #13 Sep 10 2023 01:50:56 %S A276879 1,6,11,18,23,30,35,40,47,52,59,64,69,76,81,88,93,100,105,110,117,122, %T A276879 129,134,139,146,151,158,163,170,175,180,187,192,199,204,209,216,221, %U A276879 228,233,238,245,250,257,262,269,274,279,286,291,298,303,308,315 %N A276879 Sums-complement of the Beatty sequence for 1 + sqrt(2). %C A276879 See A276871 for a definition of sums-complement and guide to related sequences. %H A276879 G. C. Greubel, <a href="/A276879/b276879.txt">Table of n, a(n) for n = 1..5000</a> %H A276879 Robbert Fokkink, <a href="https://arxiv.org/abs/2309.01644">The Pell Tower and Ostronometry</a>, arXiv:2309.01644 [math.CO], 2023. %H A276879 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %e A276879 The Beatty sequence for 1 + sqrt(2) is A003151 = (0,2,4,7,9,12,14,16,...), with difference sequence s = A276862 = (2,2,3,2,3,2,2,3,2,3,2,2,3,2,3,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,7,8,9,12,...), with complement (1,6,11,18,23,...). %t A276879 z = 500; r = 1+Sqrt[2]; b = Table[Floor[k*r], {k, 0, z}]; (* A003151 *) %t A276879 t = Differences[b]; (* A276862 *) %t A276879 c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}]; %t A276879 u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]]; %t A276879 w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w] (* A276879 *) %Y A276879 Cf. A003151, A276862, A276871. %K A276879 nonn,easy %O A276879 1,2 %A A276879 _Clark Kimberling_, Sep 27 2016