This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276882 #10 Sep 30 2016 13:22:24 %S A276882 1,2,5,8,9,12,15,16,19,22,25,26,29,32,33,36,39,42,43,46,49,50,53,56, %T A276882 57,60,63,66,67,70,73,74,77,80,83,84,87,90,91,94,97,98,101,104,107, %U A276882 108,111,114,115,118,121,124,125,128,131,132,135,138,141,142,145 %N A276882 Sums-complement of the Beatty sequence for 2 + sqrt(2). %C A276882 See A276871 for a definition of sums-complement and guide to related sequences. %H A276882 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %e A276882 The Beatty sequence for 2 + sqrt(2) is A001952 = (0,3,6,10,13,17,20, 23,27,...), with difference sequence s = A276864 = (3,3,4,3,4,3,3,4,3,4,3,3,4,3,4,...). The sums s(j)+s(j+1)+...+s(k) include (3,4,6,7,10,11,13,14,17,...), with complement (1,2,5,8,9,12,15,...). %t A276882 z = 500; r = 2+Sqrt[2]; b = Table[Floor[k*r], {k, 0, z}]; (* A001952 *) %t A276882 t = Differences[b]; (* A276864 *) %t A276882 c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}]; %t A276882 u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]]; %t A276882 w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w] (* A276882 *) %Y A276882 Cf. A001952, A276864, A276871. %K A276882 nonn,easy %O A276882 1,2 %A A276882 _Clark Kimberling_, Sep 27 2016