This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276883 #17 Nov 19 2024 04:33:24 %S A276883 1,2,5,6,9,10,13,16,17,20,21,24,25,28,31,32,35,36,39,40,43,46,47,50, %T A276883 51,54,57,58,61,62,65,66,69,72,73,76,77,80,81,84,87,88,91,92,95,96,99, %U A276883 102,103,106,107,110,113,114,117,118,121,122,125,128,129,132 %N A276883 Sums-complement of the Beatty sequence for 2 + sqrt(3). %C A276883 See A276871 for a definition of sums-complement and guide to related sequences. %H A276883 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>. %e A276883 The Beatty sequence for 2 + sqrt(3) is A003512 = (0,3,7,11,14,18,22,26,...), with difference sequence s = A276865 = (3,4,4,3,4,4,4,3,4,4,4,3,4,4,3,...). The sums s(j)+s(j+1)+...+s(k) include (3,4,7,8,11,12,14,15,18,...), with complement (1,2,5,6,9,10,13,...). %t A276883 z = 500; r = 2 + Sqrt[3]; b = Table[Floor[k*r], {k, 0, z}]; (* A003512 *) %t A276883 t = Differences[b]; (* A276865 *) %t A276883 c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}]; %t A276883 u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]]; %t A276883 w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w] (* A276883 *) %Y A276883 Cf. A003512, A276865, A276871. %K A276883 nonn,easy %O A276883 1,2 %A A276883 _Clark Kimberling_, Sep 27 2016