A276885 Sums-complement of the Beatty sequence for 1 + phi.
1, 4, 9, 12, 17, 22, 25, 30, 33, 38, 43, 46, 51, 56, 59, 64, 67, 72, 77, 80, 85, 88, 93, 98, 101, 106, 111, 114, 119, 122, 127, 132, 135, 140, 145, 148, 153, 156, 161, 166, 169, 174, 177, 182, 187, 190, 195, 200, 203, 208, 211, 216, 221, 224, 229, 232, 237
Offset: 1
Examples
The Beatty sequence for 1 + phi is A001950 = (2,5,7,10,13,15,18,20,23,26,...), with difference sequence s = A005614 + 2 = (3,2,3,3,2,3,2,3,3,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,5,6,7,8,10,11,13,14,15,16,18,...), with complement (1,4,9,12,17,22,...).
References
- Jeffrey Shallit, "Synchronized Sequences" in Lecture Notes of Computer science 12847 pp 1-19 2021, see page 16.
Links
- Michel Dekking, The Frobenius problem for homomorphic embeddings of languages into the integers, arXiv:1712.03345 [math.CO], 2017.
- Index entries for sequences related to Beatty sequences
Programs
-
Mathematica
z = 500; r = 1 + GoldenRatio; b = Table[Floor[k*r], {k, 0, z}]; (* A001950 *) t = Differences[b]; (* 2 + A003849 *) c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}]; u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]]; w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276885 *)
-
Python
from math import isqrt def A276885(n): return n+(n-1+isqrt(5*(n-1)**2)&-2) # Chai Wah Wu, May 21 2025
Formula
a(n) = 2[(n-1)phi] + n, where phi = (1+sqrt(5))/2 (see Example 1 in the paper 'The Frobenius problem for homomorphic embeddings of languages into the integers'). - Michel Dekking, Dec 21 2017
a(n) = A035336(n-1)+2 for n>1. - Michel Dekking, Dec 21 2017
Extensions
Name edited and example corrected by Michel Dekking, Oct 30 2016
Comments