This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276889 #4 Oct 02 2016 00:37:00 %S A276889 1,2,5,8,11,14,17,20,21,24,27,30,33,36,39,42,43,46,49,52,55,58,61,64, %T A276889 65,68,71,74,77,80,83,86,87,90,93,96,99,102,105,108,109,112,115,118, %U A276889 121,124,127,130,131,134,137,140,143,146,149,150,153,156,159,162 %N A276889 Sums-complement of the Beatty sequence for sqrt(2) + sqrt(3). %C A276889 See A276871 for a definition of sums-complement and guide to related sequences. %H A276889 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %e A276889 The Beatty sequence for sqrt(2) + sqrt(3) is A110117 = (0,3,6,9,12,15,18,22,...), with difference sequence s = A276870 = (3,3,3,3,3,3,4,3,3,3,3,3,3,4,3,...). The sums s(j)+s(j+1)+...+s(k) include (3,4,6,7,9,10,...), with complement (1,2,5,8,11,14,17,20,21,...). %t A276889 z = 500; r = Sqrt[2] + Sqrt[3]; b = Table[Floor[k*r], {k, 0, z}]; (* A110117 *) %t A276889 t = Differences[b]; (* A276870 *) %t A276889 c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}]; %t A276889 u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]]; %t A276889 w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276889 *) %Y A276889 Cf. A110117, A276870, A276871. %K A276889 nonn,easy %O A276889 1,2 %A A276889 _Clark Kimberling_, Oct 01 2016