cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276916 Subsequence of centered square numbers obtained by adding four triangles from A276914 and a central element, a(n) = 4*A276914(n) + 1.

This page as a plain text file.
%I A276916 #24 Sep 08 2022 08:46:17
%S A276916 1,5,41,61,145,181,313,365,545,613,841,925,1201,1301,1625,1741,2113,
%T A276916 2245,2665,2813,3281,3445,3961,4141,4705,4901,5513,5725,6385,6613,
%U A276916 7321,7565,8321,8581,9385,9661,10513,10805,11705,12013,12961,13285,14281,14621,15665
%N A276916 Subsequence of centered square numbers obtained by adding four triangles from A276914 and a central element, a(n) = 4*A276914(n) + 1.
%C A276916 All terms of this sequence are centered square numbers. Graphically, each term of the sequence is made of four squares, eight triangles and a central element.
%C A276916 a(A220185(n+1)) = A008844(2n) = A079291(4n+1), which is a square of a Pell number.
%H A276916 Daniel Poveda Parrilla, <a href="/A276916/b276916.txt">Table of n, a(n) for n = 0..10000</a>
%H A276916 Daniel Poveda Parrilla, <a href="/A276916/a276916.gif">Illustration of initial terms</a>
%H A276916 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F A276916 a(n) = 4*n*(2*n + (-1)^n) + 1.
%F A276916 a(n) = 4*n*(2*n + 1) + 1 for n even.
%F A276916 a(n) = 4*n*(2*n - 1) + 1 for n odd.
%F A276916 a(n) is sum of two squares; a(n) = k^2 + (k+1)^2 where k = 2n-(n mod 2). - _David A. Corneth_, Sep 27 2016
%F A276916 From _Colin Barker_, Sep 27 2016: (Start)
%F A276916 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4.
%F A276916 G.f.: (1+4*x+34*x^2+12*x^3+13*x^4) / ((1-x)^3*(1+x)^2). (End)
%F A276916 E.g.f.: (1+8*x+8*x^2)*exp(x) - 4*x*exp(-x). - _G. C. Greubel_, Aug 19 2022
%p A276916 A276916:=n->4*n*(2*n+(-1)^n)+1: seq(A276916(n), n=0..60); # _Wesley Ivan Hurt_, Sep 27 2016
%t A276916 Table[4 n (2 n + (-1)^n) + 1, {n, 0, 44}] (* or *)
%t A276916 CoefficientList[Series[(1 +4x +34x^2 +12x^3 +13x^4)/((1-x)^3*(1+x)^2), {x, 0, 44}], x] (* _Michael De Vlieger_, Sep 28 2016 *)
%o A276916 (PARI) Vec((1+4*x+34*x^2+12*x^3+13*x^4)/((1-x)^3*(1+x)^2) + O(x^50)) \\ _Colin Barker_, Sep 27 2016
%o A276916 (Magma) [4*n*(2*n+(-1)^n)+1 : n in [0..60]]; // _Wesley Ivan Hurt_, Sep 27 2016
%o A276916 (SageMath) [4*n*(2*n+(-1)^n) +1 for n in (0..60)] # _G. C. Greubel_, Aug 19 2022
%Y A276916 Cf. A008844, A079291, A220185, A276914.
%K A276916 nonn,easy
%O A276916 0,2
%A A276916 _Daniel Poveda Parrilla_, Sep 27 2016