A276917 Numbers obtained by alternatively adding centered pentagonal layers of 5*(2^n-1) and 5*(3^n-1) elements.
1, 6, 16, 31, 71, 106, 236, 311, 711, 866, 2076, 2391, 6031, 6666, 17596, 18871, 51671, 54226, 152636, 157751, 452991, 463226, 1348956, 1369431, 4026631, 4067586, 12039196, 12121111, 36035951, 36199786, 107944316, 108271991, 323505591, 324160946, 969861756
Offset: 0
Links
- Daniel Poveda Parrilla, Table of n, a(n) for n = 0..1000
- Daniel Poveda Parrilla, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (2,4,-10,-1,12,-6).
Crossrefs
Cf. A005891.
Programs
-
Mathematica
Table[5 (Sum[2^i, {i, 0, ((n + Mod[n, 2])/2)}] + Sum[3^j, {j, 0, ((n - Mod[n, 2])/2)}]) - 5 n - 9, {n, 0, 28}] (* or *) CoefficientList[Series[(1 + 4 x - 15 x^3 + 6 x^4 - 6 x^5)/((-1 + x)^2 (1 - 5 x^2 + 6 x^4)), {x, 0, 28}], x] (* or *) LinearRecurrence[{2, 4, -10, -1, 12, -6}, {1, 6, 16, 31, 71, 106}, 29]
-
PARI
Vec((1+4*x-15*x^3+6*x^4-6*x^5) / ((-1+x)^2*(1-5*x^2+6*x^4)) + O(x^40)) \\ Colin Barker, Dec 30 2016
Formula
a(n) = 5*(Sum_{i=0..((n+(n mod 2))/2)} 2^i + Sum_{j=0..((n-(n mod 2))/2)} 3^j) - 5*n - 9.
a(n) = a(n-1) + 5*((2+((n+1) mod 2))^((n+(n mod 2))/2) - 1) for n>0.
G.f.: (1+4*x-15*x^3+6*x^4-6*x^5)/((-1+x)^2*(1-5*x^2+6*x^4)).
From Colin Barker, Dec 30 2016: (Start)
a(n) = (-10*n + 5*3^(n/2+1) + 5*2^(n/2+2) - 33)/2 for n even.
a(n) = (-10*n + 5*3^(n/2+1/2) + 5*2^(n/2+5/2) - 33)/2 for n odd.
(End)
Comments