This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276918 #6 Jan 27 2017 13:22:05 %S A276918 1,5,9,25,49,113,225,481,961,1985,3969,8065,16129,32513,65025,130561, %T A276918 261121,523265,1046529,2095105,4190209,8384513,16769025,33546241, %U A276918 67092481,134201345,268402689,536838145,1073676289,2147418113,4294836225,8589803521,17179607041 %N A276918 a(2n) = A060867(n+1), a(2n+1) = A092440(n+1). %C A276918 In binary there is a pattern in how the zeros and ones appear: %C A276918 a(0) = 01 %C A276918 a(1) = 101 %C A276918 a(2) = 1001 %C A276918 a(3) = 11001 %C A276918 a(4) = 110001 %C A276918 a(5) = 1110001 %C A276918 a(6) = 11100001 %C A276918 a(7) = 111100001 %C A276918 a(8) = 1111000001 %C A276918 a(9) = 11111000001 %C A276918 a(10) = 111110000001 %C A276918 a(11) = 1111110000001 %C A276918 a(12) = 11111100000001 %C A276918 a(13) = 111111100000001 %C A276918 a(14) = 1111111000000001 %C A276918 a(15) = 11111111000000001 %C A276918 Graphically, each term can be obtained by successively and alternately forming squares and centered squares as shown in the illustration. %H A276918 Daniel Poveda Parrilla, <a href="/A276918/b276918.txt">Table of n, a(n) for n = 0..1000</a> %H A276918 Daniel Poveda Parrilla, <a href="/A276918/a276918.gif">Illustration of initial terms</a> %H A276918 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-6,4). %F A276918 a(n) = 1 + 2^(n+2) - 2^(1 + n/2) + (-1)^(n+1)*2^(1 + n/2) - 2^((n+1)/2) + (-1)^(n+2)*2^((n+1)/2). %F A276918 a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4) for n>3. %F A276918 G.f.: (-1-2*x+6*x^2-4*x^3)/(-1+3*x-6*x^3+4*x^4). %t A276918 Table[1+2^(n+2)-2^(1+n/2)+(-1)^(n+1) 2^(1+n/2)-2^((n+1)/2)+(-1)^(n+2) 2^((n+1)/2), {n,0,28}] (*or*) %t A276918 CoefficientList[Series[(-1 - 2 x + 6 x^2 - 4 x^3)/(-1 + 3 x - 6 x^3 + 4 x^4), {x,0,28}], x] (*or*) %t A276918 LinearRecurrence[{3, 0, -6, 4}, {1, 5, 9, 25}, 29] %o A276918 (PARI) Vec((-1-2*x+6*x^2-4*x^3) / (-1+3*x-6*x^3+4*x^4) + O(x^29)) %Y A276918 Cf. A000225, A060867, A092440, A224195. %K A276918 nonn %O A276918 0,2 %A A276918 _Daniel Poveda Parrilla_, Jan 26 2017