This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276919 #26 Jun 07 2017 00:35:36 %S A276919 1,8,27,64,125,216,336,512,1296,1000,1331,1728,1794,2688,3375,4096, %T A276919 4913,10368,7410,8000,9072,10648,12167,13824,15625,14352,34992,21504, %U A276919 24389,27000,30225,32768,35937,39304,42000,82944,48396,59280,48438,64000,68921,72576,77529,85184,162000,97336 %N A276919 Number of solutions to x^3 + y^3 + z^3 + t^3 == 1 (mod n) for 1 <= x, y, z, t <= n. %C A276919 It appears that a(n) = n^3 for n in A088232. See also A066498. - _Michel Marcus_, Oct 11 2016 %H A276919 Chai Wah Wu, <a href="/A276919/b276919.txt">Table of n, a(n) for n = 1..10000</a> %t A276919 JJJ[4, n, lam] = Sum[If[Mod[a^3 + b^3 + c^3 + d^3, n] == Mod[lam, n], 1, 0], {d, 0, n - 1}, {a, 0, n - 1}, {b, 0, n - 1}, {c, 0 , n - 1}]; Table[JJJ[4, n, 1], {n, 1, 50}] %o A276919 (PARI) a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(t=1, n, Mod(x,n)^3 + Mod(y,n)^3 + Mod(z,n)^3 + Mod(t,n)^3 == 1)))); \\ _Michel Marcus_, Oct 11 2016 %o A276919 (PARI) qperms(v) = {my(r=1,t); v = vecsort(v); for(i=1,#v-1, if(v[i]==v[i+1], t++, r*=binomial(i,t+1);t=0));r*=binomial(#v,t+1)} %o A276919 a(n) = {my(t=0); forvec(v=vector(4,i,[1,n]), if(sum(i=1, 4, Mod(v[i], n)^3)==1, print1(v", "); t+=qperms(v)),1);t} \\ _David A. Corneth_, Oct 11 2016 %o A276919 (Python) %o A276919 def A276919(n): %o A276919 ndict = {} %o A276919 for i in range(n): %o A276919 i3 = pow(i,3,n) %o A276919 for j in range(i+1): %o A276919 j3 = pow(j,3,n) %o A276919 m = (i3+j3) % n %o A276919 if m in ndict: %o A276919 if i == j: %o A276919 ndict[m] += 1 %o A276919 else: %o A276919 ndict[m] += 2 %o A276919 else: %o A276919 if i == j: %o A276919 ndict[m] = 1 %o A276919 else: %o A276919 ndict[m] = 2 %o A276919 count = 0 %o A276919 for i in ndict: %o A276919 j = (1-i) % n %o A276919 if j in ndict: %o A276919 count += ndict[i]*ndict[j] %o A276919 return count # _Chai Wah Wu_, Jun 06 2017 %Y A276919 Cf. A000189, A047726, A060839, A063454, A087412, A087786, A254073, A276920. %K A276919 nonn,mult %O A276919 1,2 %A A276919 _José María Grau Ribas_, Sep 22 2016