This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A276921 #20 Jan 01 2022 04:44:52 %S A276921 1,1,0,1,1,0,1,1,2,0,1,1,3,6,0,1,1,3,12,24,0,1,1,3,13,66,120,0,1,1,3, %T A276921 13,74,450,720,0,1,1,3,13,75,530,3690,5040,0,1,1,3,13,75,540,4550, %U A276921 35280,40320,0,1,1,3,13,75,541,4670,45570,385560,362880,0 %N A276921 Number A(n,k) of ordered set partitions of [n] with at most k elements per block; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A276921 Alois P. Heinz, <a href="/A276921/b276921.txt">Antidiagonals n = 0..140, flattened</a> %H A276921 Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, <a href="https://arxiv.org/abs/2108.04302">Restricted generating trees for weak orderings</a>, arXiv:2108.04302 [math.CO], 2021. %F A276921 E.g.f. of column k: 1/(1-Sum_{i=1..k} x^i/i!). %F A276921 A(n,k) = Sum_{j=0..k} A276922(n,j). %e A276921 Square array A(n,k) begins: %e A276921 1, 1, 1, 1, 1, 1, 1, 1, ... %e A276921 0, 1, 1, 1, 1, 1, 1, 1, ... %e A276921 0, 2, 3, 3, 3, 3, 3, 3, ... %e A276921 0, 6, 12, 13, 13, 13, 13, 13, ... %e A276921 0, 24, 66, 74, 75, 75, 75, 75, ... %e A276921 0, 120, 450, 530, 540, 541, 541, 541, ... %e A276921 0, 720, 3690, 4550, 4670, 4682, 4683, 4683, ... %e A276921 0, 5040, 35280, 45570, 47110, 47278, 47292, 47293, ... %p A276921 A:= proc(n, k) option remember; `if`(n=0, 1, add( %p A276921 A(n-i, k)*binomial(n, i), i=1..min(n, k))) %p A276921 end: %p A276921 seq(seq(A(n, d-n), n=0..d), d=0..12); %t A276921 A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 03 2017, translated from Maple *) %Y A276921 Columns k=0..10 give: A000007, A000142, A080599, A189886, A276924, A276925, A276926, A276927, A276928, A276929, A276930. %Y A276921 Main diagonal gives A000670. %Y A276921 Cf. A276922. %K A276921 nonn,tabl %O A276921 0,9 %A A276921 _Alois P. Heinz_, Sep 22 2016