cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276965 Square row sums of the triangle of Lah numbers (A105278).

This page as a plain text file.
%I A276965 #32 Jun 05 2017 19:07:09
%S A276965 1,1,5,73,2017,86801,5289301,430814665,45052534913,5868875082817,
%T A276965 930114039075301,175964489469769001,39125942325820605025,
%U A276965 10092849114680961297553,2987365449592984040715317,1005030253302269078318250601
%N A276965 Square row sums of the triangle of Lah numbers (A105278).
%H A276965 G. C. Greubel, <a href="/A276965/b276965.txt">Table of n, a(n) for n = 0..245</a>
%F A276965 a(n) = Sum_{k=0..n} lah(n,k)^2.
%F A276965 a(n) = Sum_{k=0..n} binomial(n,k)^2*binomial(n-1,k-1)^2*((n-k)!)^2.
%F A276965 a(n) = hypergeometric([-n+1,-n+1,-n,-n],[1],1).
%F A276965 a(n) = (n!)^2 * hypergeometric([-n+1,-n+1],[1,2,2],1) for n > 0.
%F A276965 Recurrence: n*(16*n^3 - 96*n^2 + 185*n - 116)*a(n) = 2*(32*n^6 - 272*n^5 + 930*n^4 - 1668*n^3 + 1670*n^2 - 867*n + 164)*a(n-1) - (n-2)*(96*n^7 - 1056*n^6 + 4646*n^5 - 10500*n^4 + 12990*n^3 - 8644*n^2 + 2827*n - 364)*a(n-2) + 2*(n-3)*(n-2)^3*(32*n^6 - 336*n^5 + 1410*n^4 - 2978*n^3 + 3268*n^2 - 1731*n + 353)*a(n-3) - (n-4)^2*(n-3)^3*(n-2)^4*(16*n^3 - 48*n^2 + 41*n - 11)*a(n-4). - _Vaclav Kotesovec_, Sep 27 2016
%F A276965 a(n) ~ n^(2*n - 3/4) * exp(4*sqrt(n) - 2*n - 1) / (2^(3/2) * sqrt(Pi)) * (1 + 31/(96*sqrt(n)) + 937/(18432*n)). - _Vaclav Kotesovec_, Sep 27 2016
%t A276965 Table[HypergeometricPFQ[{1-n,1-n,-n,-n},{1},1],{n,0,100}]
%o A276965 (Maxima) makelist(hypergeometric([-n+1,-n+1,-n,-n],[1],1),n,0,12);
%o A276965 (Perl) use ntheory ":all"; for my $n (0..20) { say "$n ",vecsum(map{my $l=stirling($n,$_,3); vecprod($l,$l); } 0..$n) } # _Dana Jacobsen_, Mar 16 2017
%o A276965 (PARI) concat([1], for(n=1,25, print1(sum(k=0,n, binomial(n,k)^2*binomial(n-1,k-1)^2*((n-k)!)^2), ", "))) \\ _G. C. Greubel_, Jun 05 2017
%Y A276965 Cf. A000262, A105278, A008297.
%K A276965 nonn
%O A276965 0,3
%A A276965 _Emanuele Munarini_, Sep 27 2016